

# **Chemical Contaminant Sampling and Analysis of Shellfish from Classified Harvesting Areas (2014)**

Report to the Food Standards Agency in Scotland

September 2014









The Food and Environment Research Agency Sand Hutton York YO41 1LZ UK

Tel: +44(0)1904 46 2000 Web: www.defra.gov.uk/fera

Email: foodanalysis@fera.gsi.gov.uk/ info@fera.gsi.gov.uk



## Chemical Contaminant Sampling and Analysis of Shellfish from Classified Harvesting Areas (2014)

Report Number: FD 14/04

Authors: S. Panton, J. Holland, N. Brereton, A. Fernandes

Date: 06 June 2014

Sponsor: Food Standards Agency in Scotland

6th Floor

St Magnus House 25, Guild Street Aberdeen AB11 6NJ

Sponsor's Project Number: FSA MOU 199 / Cefas C5669/C5674

FERA Contract Number: Y6BR

FERA File Reference: FLN 9201

Principal Workers: F Smith, S Panton, J Holland, N Brereton, L Lister,

M Baxter, K Harmannij, E Greene, J Stewart

Team Leader: M Rose

Distribution: 1. Dr Kasia Kazimierczak, FSAS

2. Dr Martin Rose, Fera

3. Dr Alwyn Fernandes, Fera

4. FLN 9201

5. FERA information Centre

6. Dr Myriam Algoet, Cefas

| Document prepared by: | S. Panton, J. Holland, N. Brereton, A Fernandes |                                |
|-----------------------|-------------------------------------------------|--------------------------------|
| Document checked by:  | J.Holland 28/0814, Martin Rose, 28/08/14        | Review Date: N/A               |
| Document approved by: | C5669 Project Manager – 11/06/14                | Classification: Not classified |
|                       | Service Delivery Manager - J. Holland, 28/08/14 |                                |

Quality statement: All results were quality checked and approved prior to release to the FSA. Information relating to the origin of the samples (place and date of collection) is as provided by sampling staff and has not undergone verification checks by Fera.



## **Contents**

### Report to the Food Standards Agency in Scotland

| Glossary of Main Terms                                                   | 4  |
|--------------------------------------------------------------------------|----|
| Executive Summary                                                        | 5  |
| 1. Study Background                                                      | 6  |
| 2. Methodology                                                           | 9  |
| 2.1 Sample Collection and Preparation                                    | 9  |
| 2.2 Contaminants measured – Specific Analytes                            | 9  |
| Figure 1: Shellfish Production Areas that have been monitored since 2006 |    |
| 2.3 PCDD/F and PCB - Analytical Methodology                              | 11 |
| 2.4 Polycyclic Aromatic Hydrocarbons (PAH) - Analytical Methodology      | 11 |
| 2.5 Trace Elements - Analytical Methodology                              | 12 |
| Table 1: Overview of samples                                             | 13 |
| 3. Results                                                               | 15 |
| 4. Conclusions                                                           | 17 |
| Table 3.1 PCDD/Fs (dioxins) concentrations (Whole weight)                | 18 |
| Table 3.1 PCDD/Fs (dioxins) concentrations (Lipid weight)                | 19 |
| Table 3.2 Non-ortho PCB concentrations                                   | 20 |
| Table 3.3 Ortho PCB concentrations (Whole weight)                        | 21 |
| Table 3.3 Ortho PCB concentrations (Lipid weight)                        | 22 |
| Table 3.4 Summary of PCDD/F and PCB WHO-TEQ, and ICES-6 concentrations   | 23 |
| Table 3.5 PAH concentrations (whole weight)                              | 24 |
| Table 3.6 Heavy metal concentrations (whole weight)                      | 31 |
| 5 References                                                             | 35 |







FSAS -2014 3 of 38



## **Glossary of Main Terms**

| Term or<br>Acronym | General Meaning Of Term                                                                                                                                                                                                                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EU                 | European Union                                                                                                                                                                                                                                                                                                                 |
| EC                 | European Commission                                                                                                                                                                                                                                                                                                            |
| FSAS               | Food Standards Agency in Scotland                                                                                                                                                                                                                                                                                              |
| WHO                | World Health Organisation                                                                                                                                                                                                                                                                                                      |
| PAHs               | Polycyclic aromatic hydrocarbons                                                                                                                                                                                                                                                                                               |
| PAH 4 Sum          | Sum of 4 PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, chrysene)                                                                                                                                                                                                                                              |
| PCB                | Polychlorinated biphenyl                                                                                                                                                                                                                                                                                                       |
| Ortho-PCB          | Ortho-substituted PCB (non planar)                                                                                                                                                                                                                                                                                             |
| Non-ortho-PCB      | Non-ortho-substituted PCB (co-planar)                                                                                                                                                                                                                                                                                          |
| Dioxins            | Collective name for chlorinated Dioxins & Furans                                                                                                                                                                                                                                                                               |
| PCDD/F             | Polychlorinated dibenzo-p-dioxin/ polychlorinated dibenzofuran                                                                                                                                                                                                                                                                 |
| TEF                | Toxic Equivalency Factor – toxicity expressed for each dioxin-like compound as a fraction of 2,3,7,8-TCDD (2,3,7,8-TCDD = 1).                                                                                                                                                                                                  |
| TEQ                | Toxic Equivalence – product of the congener concentration and the TEF                                                                                                                                                                                                                                                          |
| Total TEQ          | Total of the Sum of all the Toxic Equivalences (TEQs) for each group of compounds                                                                                                                                                                                                                                              |
| Sum of ICES 6      | Sum of PCB28, PCB52, PCB101, PCB138, PCB153 and PCB180                                                                                                                                                                                                                                                                         |
| fat weight         | Values relevant to the assessed fat content of the sample                                                                                                                                                                                                                                                                      |
| whole weight       | Values based on the sample as received 'whole' or wet                                                                                                                                                                                                                                                                          |
| WHO-TEQ 2005       | World Health Organisation - TEQ based on values as set in 2005                                                                                                                                                                                                                                                                 |
| LOD                | Limit of Detection                                                                                                                                                                                                                                                                                                             |
| LOQ                | Limit of Quantification                                                                                                                                                                                                                                                                                                        |
| Lower bound        | assumes values at less than the limit of detection are zero (e.g.<0.01=0)                                                                                                                                                                                                                                                      |
| Upper bound        | assumes values at less than the limit of detection are equal to the limit of detection (e.g. <0.07=0.07)                                                                                                                                                                                                                       |
| Trace Element      | An element in a sample that has an average concentration of less than 100 parts per million (less than 100 mg/kg)                                                                                                                                                                                                              |
| Heavy Metals       | A loosely defined subset of elements that exhibit metallic properties (some are toxic, some are a nutritional requirement in small amounts), (This survey includes, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Ag, Cd, Hg & Pb, (Chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, silver, cadmium, mercury and lead) |
| ng/kg              | Nanogram per kilogram (x10-9/ part per trillion)                                                                                                                                                                                                                                                                               |
| μg/kg              | Microgram per kilogram (x 10-6/ part per billion)                                                                                                                                                                                                                                                                              |
| mg/kg              | Milligram per kilogram (x 10-3/ part per million)                                                                                                                                                                                                                                                                              |
| ICP-MS             | Inductively coupled plasma-mass spectrometry                                                                                                                                                                                                                                                                                   |
| HRGC-HRMS          | High resolution gas chromatography - high resolution mass spectrometry                                                                                                                                                                                                                                                         |
| HRGC-LRMS          | High resolution gas chromatography – unit resolution mass spectrometry                                                                                                                                                                                                                                                         |

FSAS -2014 4 of 38



## **Executive Summary**

This study on chemical contaminants in shellfish from Scottish classified shellfish production areas, fulfils part of the requirements of EU member states (EU Regulations (EC) No.1881/2006 and (EC) No. 854/2004) to adopt appropriate monitoring measures and carry out compliance checks on shellfish produced for human consumption. In comparison to earlier years, the scope of this study was widened to include production areas that had not been tested before. Marine shellfish bio-accumulate environmental contaminants because of their inability to metabolise these during feeding. The study determines concentrations of regulated environmental contaminants in the flesh of edible species with a view to determine current levels of occurrence and to allow estimation of consumer exposure.

The study analysed nine composite samples of shellfish including mussels, Pacific oysters, cockles, native oysters, queen scallop, razor clams, wedge clams and surf clams for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, dioxins), polychlorinated biphenyls (PCBs) and thirty-six samples for polycyclic aromatic hydrocarbons (PAHs) and heavy metals. The methodologies used for the analyses were UKAS accredited to the ISO 17025 standard and follow EU commission regulations for data quality criteria.

The highest observed levels of the currently regulated PAHs were benzo[a]pyrene at 5.93 µg/kg, and PAH 4 at 29.94 µg/kg compare to the maximum permitted level (MPL) of 5 µg/kg and 30 µg/kg respectively (Regulation (EC) No. 835/2011). Four samples exceeded the MPL for benzo[a]pyrene. In the case of PCDD/Fs and PCBs in particular, contaminant concentrations were all below the regulatory maximum levels (Regulation (EU) No. 1259/2011), and this level of occurrence is unlikely to pose a risk to public health. Concentrations of the regulated heavy metals, mercury, cadmium and lead were all below the set maximum limits except for one sample, which contained cadmium at 3.98 mg/kg (MPL 1.0 mg/kg - Commission Regulation (EC) No. 1881/2006 as amended). Contaminant profiles from the current study are similar to the previous year's data. The data contained in this report will be issued as individual test reports for each of the relevant shellfish producing area local authorities.

Following the exceedence of MPLs for benzo[a]pyrene and cadmium, the areas in question were re-sampled and tests carried out for PAHs and metals respectively. The results for the re-sampled areas all showed levels to be below MPLs.

FSAS -2014 5 of 38



### 1. Study Background

Marine shellfish are an excellent source of protein, are high in essential minerals, and low in calories and fat. In many parts of the UK and in Scotland in particular, the shellfish industry makes a significant contribution to the local economy. Shellfish have a recognised potential for bio-accumulating contaminants and some bivalve species such as mussels, are commonly used as early indicators of local pollution. Bivalves feed by filtering plankton from the surrounding water that washes through their habitat. This feeding mechanism leads to the bio-accumulation of pollutants of biogenic and anthropogenic origin such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), heavy metals (trace elements) and polycyclic aromatic hydrocarbons (PAHs), from the surrounding waters. The bio-accumulation potential of the shellfish species used for food is particularly relevant in the case of environmental contaminants with long half-lives such as chlorinated dioxins and PCBs. These contaminants have been the subject of a number of studies (Garraud et al 2007, Lee et al 2007, Fernandes et al 2009, Fernandes et al 2012) relating to the occurrence and bio-accumulation in marine species and the resulting potential for human exposure arising from the consumption of the edible species.

In recognising the requirements of food safety, the EU has for a number of years, defined regulation for the control of these contaminants in a range of foods including shellfish. (Commission Regulation (EC) No 1259/2011, Commission Regulation (EU) No 835/2011, Commission Regulation (EC) No 333/2007). Some of the regulations specify new requirements on the controls expected by the competent authority (Food Standards Agency) with respect to classified shellfish production areas. EU member states are required to adopt appropriate monitoring measures and carry out compliance checks with regard to the occurrence of these contaminants in shellfish produced for human consumption.

PCDD/Fs and PCBs are recognised environmental and food contaminants that are known to bio-accumulate in fish and shellfish. The extent of this accumulation is evident by the levels of these contaminants detected in various studies. In the UK, Total Diet Studies (TDS) (FSA 2003) carried out over the last 2 decades, fish (including shellfish) has consistently been one of the highest dioxin and PCB containing food groups. Human dietary exposure can therefore be significantly influenced by the fish and shellfish component of the diet, particularly in high level consumers and low body-weight individuals.

FSAS -2014 6 of 38



Although metabolised in many fish species, PAHs persist in shellfish as filter feeding species appear unable to effect bio-transformation of these contaminants. Other than this bio-accumulation pathway, PAHs can also arise in fish and shellfish through some food preparation and processing methods – e.g. smoked fish are known to contain elevated levels of PAHs. Some PAH compounds have been shown to be genotoxic and carcinogenic, the most studied of which (benzo[a]pyrene, or B[a]P) is regulated in a range of foods including shellfish, within the EU (SCF Opinion 2002, Commission Regulation (EC) No. 208/2005). However, more recent evaluation by EFSA's CONTAM panel, concluded that a set of 4 compounds, namely benzo[a]pyrene, chrysene, benz[a]anthracene and benzo[b]fluoranthene (collectively referred to as PAH4) were more suitable indicators of PAH toxicity in food (EFSA, 2008). These four compounds were subsequently included in the updated Commission Regulation (EC) No. 835/2011, which came into force from September 2012. In a study on bivalve molluscs including mussels, oysters and scallops, the FSA reported positive detection of most PAH compounds in samples taken in England and Wales (FSA 2005). However in comparison to a study carried out about a decade earlier, reported levels were significantly lower and no sample showed levels above the 5 µg/kg EU limit for B[a]P in shellfish.

Some trace elements and in particular, heavy metals are established toxic contaminants. Some elements, such as copper, chromium, selenium and zinc are essential to health but may be toxic at high levels of exposure. Metals and other elements may enter marine and aquatic environments and bio-accumulate in species at any point during growth and harvesting. Some potentially toxic elements occur naturally as part of the local geology, but others may also be found in the location of certain industries, as a result of unauthorised discharge, or as a result of other anthropogenic activity.

As part of its monitoring requirements in support of EU regulations, the FSA in Scotland has overseen the collection of shellfish each year, from classified shellfish production sites within relevant local authority areas in Scotland. In comparison to previous years, the present study has been extended to sites that were not included in earlier chemical contaminant testing. The production sites are required to monitor shellfish samples, with the edible tissues analysed for the contaminants described above, as specified in Commission Regulation (EU) No. 252/2012. The analysis is carried out at the Food and Environment Research Agency (FERA) in York.

FERA is an executive agency of the UK Government's Department for Environment, Food and Rural affairs (DEFRA). In the current context, FERA has generated environmental contaminant data to FSA Scotland, on shellfish collected from new and existing shellfish sites since 2007. This report collates the results of the individual analyses for dioxins, PAHs and heavy metals in samples

FSAS -2014 7 of 38



of shellfish collected from Scottish sites in the first quarter of 2014 and samples collected in June 2014 from five harvesting areas where exceedance of MPLs was observed in earlier samples.

FSAS -2014 8 of 38



## 2. Methodology

#### 2.1 Sample Collection and Preparation

Thirty six samples (individual sub-samples from each site were composited) of shellfish, including species such as common mussels, Pacific oysters, common cockles, surf clams, king scallops, queen scallop, native oysters and razor clams were collected during January to February 2014. The sampling period was timed to coincide with the period of optimal contaminant concentrations in the shellfish. In June 2014, five further samples were collected from areas where the initial samples exceeded MPLs - three razor clam samples and a queen scallop sample for benzo[a]pyrene and a king scallop sample for cadmium.

Details on the locations, with descriptions of the samples and identification are given in Table 1. The broad geographical distribution of Scottish shellfish production areas is given in Figure 1.

On receipt at the laboratory each sample was given a unique laboratory reference number and the sample details were logged into a database. The samples were stored frozen prior to analysis. Sample preparation consisted of shelling followed by compositing of individual sub-samples. The composites were thoroughly homogenised and aliquots taken for PAH and heavy metal analysis, prior to freeze-drying. Freeze-dried sample powders were re-homogenised and aliquots used for dioxin and PCB analysis.

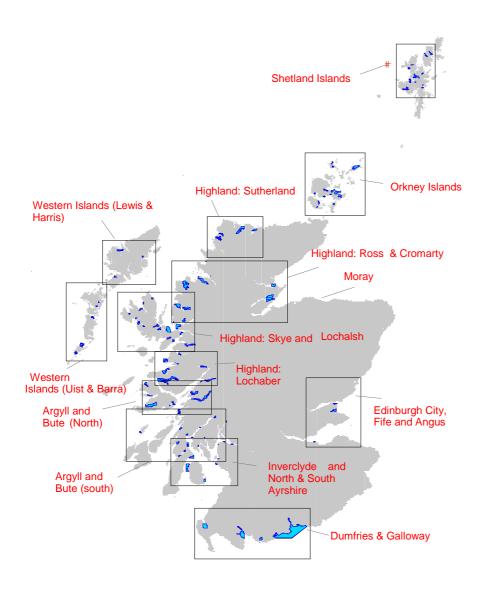
#### 2.2 Contaminants measured – Specific Analytes

The following analytes were determined: Regulated contaminants are highlighted in **bold**.

Dioxins - all 17, 2378-CI substituted PCDDs and PCDFs.

Dioxin-like PCBs - IUPAC no. 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 and 189.

Non Dioxin-like PCBs - IUPAC numbers 18, **28**, 31, 47, 49, 51, **52**, 99, **101**, 128, **138**, **153** and **180**. PAHs -


acenaphthene, acenaphthylene, fluorene. phenanthrene, anthracene. fluoranthene, benzo[c]fluorene, benzo[e]pyrene, benzo[b]naptho[2,1-d]thiophene, pyrene, anthanthrene, coronene, benzo[ghi]fluoranthene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k)fluoranthene, benzo[a]pyrene, benzo[j]fluoranthene, cyclopenta[c,d]pyrene, indeno[123cd]pyrene, dibenzo[ah]anthracene, benzo[ghi]perylene, dibenzo[al]pyrene, dibenzo[ae]pyrene, dibenzo[ai]pyrene, dibenzo[ah]pyrene and the substituted PAH, methylchrysene.

FSAS -2014 9 of 38



Heavy Metals – Chromium (Cr), Manganese (Mn), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Selenium (Se), Silver (Ag), Cadmium (Cd), Mercury (Hg), Lead (Pb)

Figure 1: Shellfish Production Areas that have been monitored since 2006



FSAS -2014 10 of 38



#### 2.3 PCDD/F and PCB - Analytical Methodology

(FERA (UK NRL) SOPs FSG 453-460)

The method used for the preparation, extraction and analysis of samples has been reported previously (Fernandes et al 2004) and is part of the CEN EN16215:2012 standard. In brief, samples were fortified with <sup>13</sup>C-labelled analogues of target compounds and exhaustively extracted using mixed organic solvents. Ortho substituted PCBs were separated from non-ortho substituted PCBs and PCDD/Fs by fractionation on activated carbon. The two fractions were further purified using adsorption chromatography on alumina. Analytical measurement was carried out using high resolution gas chromatography-high resolution mass spectrometry (HRGC-HRMS) for the seventeen, 2,3,7,8-Cl substituted PCDD/F congeners and non-ortho substituted PCBs. HRGC-unit resolution mass spectrometry (HRGC-LRMS) was used for the measurement of the ortho substituted PCBs.

All analyses were UKAS accredited to ISO 17025 standards, with the inclusion of reference material and method blanks which were evaluated prior to reporting. Further quality assurance measures included the successful participation in international inter-comparison exercises such as Dioxins in Food-2011 and Dioxins in Food-2012, on dioxins and dioxin-like PCBs. Quality control evaluation for the accompanying data follows the criteria specified for chlorinated dioxins and PCBs (Commission Regulation (EU) No 252/2012). In addition, as NRL for chemical contaminants, FERA participates in PT exercises and other inter-laboratory exercises as organised by the EU-RL.

## 2.4 Polycyclic Aromatic Hydrocarbons (PAH) - Analytical Methodology

(FERA (UK NRL) SOP FSG 410)

The analytical methodology for the PAHs has been reported before (Rose et al, 2007) and is based on internal standardisation with GC-MS measurement. An aliquot of the homogenised sample was fortified with <sup>13</sup>C-labelled analogues of target compounds and saponified with methanolic potassium hydroxide. The extracted PAH solutions were purified in two stages with a DMF/cyclohexane partition followed by adsorption chromatography on activated silica. Purified extracts were sensitivity standardised and measured using high resolution gas chromatography-unit resolution mass spectrometry.

The analytical procedure for PAHs is UKAS accredited to the ISO 17025 standard and includes the assessment of method blanks and reference materials, (e.g. T0651, PAHs in palm oil) for compliance with the accreditation criteria. The methodology also meets the criteria required for

FSAS -2014 11 of 38



evaluating data against the maximum permitted limits for benzo[a]pyrene as specified in EU Commission Regulations. FERA regularly participates in FAPAS PT exercises for PAHs in food. In addition, as NRL for chemical contaminants, FERA participates in PT exercises and other interlaboratory exercises as organised by the EU-RL.

#### 2.5 Trace Elements - Analytical Methodology

(FERA (UK NRL) SOP FSG 454 and 457)

Aliquots of the homogenised sample were weighed into alloted quartz digestion vessels and a mixture (4:1) of nitric acid and hydrochloric acid added. The vessels were sealed and the contents digested using a high pressure microwave digestion system. Reagent blanks, certified reference materials and a spiked blank were also taken through the procedure. The resulting solutions were transferred to pre-marked acid-clean plastic test tubes and diluted to 10 ml with deionised water. The digest solutions together with a set of standards covering the expected concentration range, were internally standardised with indium or rhodium in dilute nitric acid (1 %v/v). Measurements were made using an Agilent 7500ce ICP-MS with collision cell.

In common with the other two sets of analyses, the analytical procedure is accredited to the ISO17025 standard. The criteria used to assess data included checks on instrument drift, spike recovery, replicate agreement, limits of detection and certified reference material values. Regular, successful participation in FAPAS inter-comparison exercises provides further confidence in the data. In addition, as NRL for chemical contaminants, FERA participates in PT exercises and other inter-laboratory exercises as organised by the EU-RL.

FSAS -2014 12 of 38



**Table 1: Overview of samples** 

| Local Authority      | Production Area                                  | Site name           | Collection period | Sample type     | GR or *NGR for sample  | OEC Sample<br>No. |
|----------------------|--------------------------------------------------|---------------------|-------------------|-----------------|------------------------|-------------------|
|                      | Ardcastle Bay Mussels                            | Ardcastle Mussels   | 18/02/2014        | Common Mussels  | NR 95497 91887         | 22546             |
|                      | Ardcastle Bay Oysters                            | Ardcastle Oysters   | 18/02/2014        | Pacific Oyster  | NR 95497 91887         | 22549             |
|                      | Loch Fyne Otter Ferry                            | Balliemore          | 21/01/2014        | Pacific Oysters | NR 92174 83505         | 22289             |
| Argyll and Bute      | Loch Fyne Stonefield                             | North Bay           | 16/01/2014        | Queen Scallops  | NR 86486 72257         | 22262             |
|                      | Loch Fyne Stonefield (Re-<br>sample)             | North Bay           | 16/06/2014        | Queen Scallops  | NR86494 72258          | 22833             |
|                      | Loch Spelve                                      | Croggan Pier        | 14/01/2014        | Pacific Oysters | NM 70779 27339         | 22259             |
|                      | West Jura                                        | Jura                | 14/01/2014        | Razors          | Unverified             | 22261             |
| Dumfries and         | Loch Ryan                                        | Loch Ryan           | 13/01/2014        | Native oysters  | NX0675 6624            | 22254             |
| Galloway             | Luce Bay                                         | Luce Sand           | 17/02/2014        | Razors          | NX 1208 5204           | 22550             |
| Galloway             | Luce Bay (Re-sample)                             | Luce Sand           | 24/06/2014        | Razors          | NX1300 5200            | 22840             |
|                      | Forth Estuary Anstuther                          | Anstruther          | 14/01/2014        | Surf Clams      | 56' 13.86N 002' 39.40W | 22256             |
| Fife                 | Forth Estuary Largo Bay                          | Largo Bay           | 19/02/2014        | Razors          | NO 4429 0134           | 22588             |
|                      | Forth Estuary Pittenweem                         | Pittenweem Surfs    | 14/01/2014        | Surf Clams      | 56' 12.40N 002' 43.01W | 22255             |
| Highland: Ross and   | Loch Ewe & Loch Thurnaig<br>Scallops             | Loch Ewe            | 03/02/2014        | King Scallops   | NG 85832 88632         | 22432             |
| Cromarty             | Loch Ewe & Loch Thurnaig<br>Scallops (Re-sample) | Loch Ewe            | 17/06/2014        | King Scallops   | NG 8585888513          | 22834             |
|                      | Loch Leven Lower                                 | Lower               | 10/02/2014        | Common Mussels  | NN0716 5905            | 22453             |
| Highland:Lochaber    | Loch Leven Upper                                 | Upper               | 10/02/2014        | Common Mussels  | NN1480 6168            | 22452             |
|                      | Loch Sunart                                      | Liddesdale          | 28/01/14          | Common Mussels  | NM78325 60112          | 22419             |
|                      | Dornoch Firth                                    | Dornoch Firth       | 20/01/2014        | Common Mussels  | NH 7751 8484           | 22285             |
| Highland:Sutherland  | Kyle of Tongue                                   | Kyle of Tongue      | 19/02/2014        | Pacific Oyster  | NC 5932 5902           | 22589             |
| ingilana.outilenallu | Loch Glencoul                                    | Kylesku             | 18/02/2014        | Common Mussels  | NC 2407 3406           | 22593             |
|                      | Loch Inchard                                     | Loch Inchard Site 4 | 20/01/2014        | Common Mussels  | NL 2350 5536           | 22267             |

FSAS -2014 13 of 38



| Local Authority  | Production Area                            | Site name          | Collection period | Sample type     | GR or *NGR for sample | OEC Sample<br>No. |
|------------------|--------------------------------------------|--------------------|-------------------|-----------------|-----------------------|-------------------|
|                  | East Loch Tarbert                          | Sound of Scalpey   | 21/01/2014        | Common Mussels  | NG 2221 9762          | 22288             |
| Lewis and Harris | Loch Leurbost                              | Eilean Miavaig     | 28/1/14           | Common Mussels  | NB 3764 2453          | 22420             |
|                  | Loch Roag: Barraglom                       | Barraglom          | 17/02/2014        | Common Mussels  | NB 1667 3417          | 22548             |
|                  | Fairlie                                    | Southannan Sands   | 21/01/2014        | Pacific Oysters | NS 1942 5435          | 22287             |
| North Ayrshire   | Stevenston Sands                           | Stevenston Sands   | 11/02/2014        | Razors          | NS 3035 3781          | 22456             |
| ,                | Stevenston Sands (Resample)                | Stevenston Sands   | 16/06/2014        | Razors          | NS2904 3878           | 22838             |
| Orkney           | Ferness Bay                                | Ferness Razors     | 12/01/2014        | Razors          | Unverified            | 22258             |
|                  | Baltasound Mussels                         | Baltasound Harbour | 18/02/2014        | Common Mussels  | HP 6448 0885          | 22547             |
|                  | Clift Sound Booth                          | Booth              | 05/02/2014        | Common Mussels  | HU 4019 3778          | 22434             |
|                  | Clift Sound Houss                          | Houss              | 05/02/2014        | Common Mussels  | HU 3854 3193          | 22433             |
| Shetland Islands | Mid Yell Voe                               | Camb               | 14/01/2014        | Common Mussels  | HU 5117 9191          | 22257             |
|                  | Olna Firth Inner                           | Inner              | 10/02/2014        | Common Mussels  | HU 3968 6361          | 22451             |
|                  | Stromness Voe                              | Burra Holm         | 17/02/2014        | Common Mussels  | HU 3857 4556          | 22537             |
|                  | Vaila Sound: East of Linga and Galtaskerry | Whitesness         | 15/01/2014        | Common Mussels  | HU 2439 4760          | 22260             |
|                  | Meikle Craigs                              | Silver Sands       | 11/02/2014        | Razors          | NS 3430 2637          | 22457             |
| South Ayrshire   | Meikle Craigs (Re-sample)                  | Silver Sands       | 16/06/2014        | Razors          | N/A                   | 22839             |
|                  | North Bay                                  | Barassie           | 20/01/2014        | Razors          | NS 3183 3386          | 22286             |
| Uist and Barra   | North Ford                                 | Ortir Mhor         | 29/01/14          | Common Cockles  | NF 8405 5786          | 22418             |
| UIST AIIU DAITA  | Traigh Mhor                                | Traigh Mhor        | 21/01/2014        | Common Cockles  | NF 7036 0497          | 22353             |

Quality statement: Information relating to the origin of the samples (place, date of collection and GR/NGR details) is as provided by sampling staff and has not undergone verification checks by Fera/Cefas.

FSAS -2014 14 of 38



#### 3. Results

Analyte concentrations are presented in Tables 3.1 to 3.6. Concentration units reflect current convention as required by regulation, and data were rounded to two decimal places or as appropriate. The reporting limits (quoted as "<") for dioxins, PCBs and PAHs are estimated as a dynamic parameter and therefore represent the limits of determination that prevail during the course of the measurement. For PCDD/Fs, PCBs, metals and PAHs, the reporting limits are consistent with the requirements of EU regulations. Data on the reference materials that were analysed concurrently with the samples, were within established acceptable limits, and are available if required.

In addition to the concentration of individual congeners, the dioxin-like toxicity of the samples arising from PCDD/Fs and dioxin-like PCBs has also been reported as a toxic equivalent (WHO-TEQ), which is calculated by multiplying the concentration of each congener of interest by its toxicity equivalency factor (WHO-TEF). The TEQs are presented in terms of the 2005 TEFs (van den Berg et al 2006). Additionally as per the requirements of Regulation 1259/2011, the sum of the ICES-6 PCBs is also provided. The regulations for shellfish are based on whole weight concentrations; however in keeping with previous reports, the results for PCDD/Fs and PCBs have also been reported on a fat weight basis.

PCDD/Fs and PCBs were detected in all samples at levels well within the regulatory limits. The combined PCDD/F + PCB TEQ ranged from 0.06 pg TEQ/g to 0.46 pg TEQ/g which is comparable to data from 2013. The highest value was found in Pacific oysters, as was the case in 2012 and 2013. For most of the samples PCDD/Fs contributed roughly two-thirds to the total TEQ. The exceptions were a common mussel sample from Shetlands and a razor clam from the Forth Estuary, where PCDD/Fs only contributed approximately half the total TEQ.

The concentration of ICES-6 PCB ranged from 0.09  $\mu$ g/kg to 2.42  $\mu$ g/kg, with the highest levels found in Pacific oysters.

PAHs were detected in all 36 samples analysed. Higher molecular weight PAHs such as anthanthrene and the dibenzopyrenes were not found above the LOQ in any samples. Residues of PAH4 ranged from 0.51 μg/kg to 29.94 μg/kg, compared with 0.49 μg/kg to 23.3 μg/kg in 2013. The highest levels were found in razor clams. Three of the seven razor clam samples and a queen scallops sample contained benzo[a]pyrene above the regulatory limit of 5 μg/kg (Commission Regulation (EC) No. 835/2011). These were samples collected from Stevenston Sands, Meikle Craigs, Luce Bay and Loch Fyne Stonefield with benzo[a]pyrene concentrations of 5.50 (± 0.94),

FSAS -2014 15 of 38



 $5.93 (\pm 1.01)$ ,  $5.82 (\pm 0.99) \& 5.45 (\pm 0.94) \mu g/kg$  respectively. One razor clam collected from Meikle Criags was on the borderline of exceeding the limit for PAH4 set at 30  $\mu$ g/kg with a concentration of 29.94 ( $\pm$  2.48)  $\mu$ g/kg. Lowest levels were found in common cockles.

Heavy metals were detected in all samples. The four most abundant heavy metals were zinc (Zn), manganese (Mn) and copper (Cu), with Zn present at the highest concentration. Concentrations of the regulated heavy metals mercury (Hg), cadmium (Cd) and lead (Pb) were all below the regulatory limit (Commission Regulation EC 1881/2006 as amended by 629/2008) except for a king scallop collected from Loch Ewe which exceeded MPL of 1 mg/kg for Cd (level detected in sample 3.92 (± 0.71) mg/kg). The Cd result was based on the analysis of the whole animal. As only the adductor muscle and the gonad are usually consumed, recent changes in regulations (488/2014) have been modified with regard to the requirement of king scallop testing to reflect this.

In general, the patterns and levels of the three contaminant classes were consistent with those recorded last year.

Following the exceedance of MPLs for benzo[a]pyrene and Cd, the areas in question were resampled and tests were carried out for PAHs and metals respectively. The results for the resampled areas all showed levels to be below MPLs. The three razor clam samples each gave a benzo[a]pyrene concentration of 0.20  $\mu$ g/kg and the queen scallop sample gave a benzo[a]pyrene concentration of 0.34  $\mu$ g/kg. The king scallop gave a Cd concentration of 0.52 mg/kg. The follow up sample details are below the original details in table 1 and the follow up results are included alongside the original sample data in the results tables 3.5 & 3.6.

FSAS -2014 16 of 38



#### 4. Conclusions

In general terms the results of the 2014 monitoring for PCDD/Fs, PCBs, PAHs and heavy metals are similar to the 2013 data, with a slight elevation of concentrations observed. In particular, there were three razor clam samples and one queen scallop sample which exceeded the maximum permitted limit (MPL) for benzo[a]pyrene. There was also one king scallop sample which exceeded the MPL for cadmium. No firm conclusion can be drawn from the data due to the low number of samples for a given species and location. Following the exceedance of MPLs, the areas in question were re-sampled and tests carried out for PAHs and metals. The results for the resampled areas all showed levels to be below MPLs.

Further analysis of the data in conjunction with details such as sampling locations and times would yield information on spatial distribution of contaminants, and may allow further conclusions to be drawn, but this is outside the scope of the current project.

FSAS -2014 17 of 38



Table 3.1 PCDD/Fs (dioxins) concentrations - Whole weight

Note: results marked with an "i" are indicative

| OEC Reference No.         | 22285             | 22287               | 22419             | 22433                | 22453               | 22457            | 22546                    | 22549                    | 22588                        |
|---------------------------|-------------------|---------------------|-------------------|----------------------|---------------------|------------------|--------------------------|--------------------------|------------------------------|
| Fera LIMS Sample No.      | S14-009687        | S14-009689          | S14-010001        | S14-010267           | S14-010540          | S14-010830       | S14-011294               | S14-011297               | S14-011395                   |
| Sample type               | Common<br>Mussels | Pacific<br>Oysters  | Common<br>Mussels | Common<br>Mussels    | Common<br>Mussels   | Razors           | Common<br>Mussels        | Pacific<br>Oysters       | Razors                       |
| Production area           | Dornoch<br>Firth  | Fairlie             | Loch Sunar        | Clift Sound<br>Houss | Loch Leven<br>Lower | Meikle<br>Craigs | Ardcastle<br>Bay Mussels | Ardcastle<br>Bay Oysters | Forth Estuary<br>- Largo Bay |
| Site name                 | Dornoch<br>Firth  | Southannan<br>Sands | Liddesdale        | Clift Sound<br>Houss | Lower               | Silver Sands     | Bay Mussels              | Bay Oysters              | Largo Bay                    |
| Whole weight pg/g         |                   |                     |                   |                      |                     |                  |                          |                          |                              |
| 2,3,7,8-TCDD              | <0.01             | 0.03 i              | <0.01             | <0.01                | 0.01 i              | 0.02             | <0.01                    | 0.02                     | <0.01                        |
| 1,2,3,7,8-PeCDD           | <0.01             | 0.06                | 0.03              | 0.02                 | 0.03                | 0.02             | 0.04                     | 80.0                     | 0.02                         |
| 1,2,3,4,7,8-HxCDD         | <0.01             | 0.02                | 0.02              | 0.01                 | 0.02                | 0.02             | 0.03                     | 0.03                     | <0.01                        |
| 1,2,3,6,7,8-HxCDD         | <0.01             | 0.04                | 0.03              | 0.03                 | 0.03                | 0.03             | 0.06                     | 0.07                     | 0.04                         |
| 1,2,3,7,8,9-HxCDD         | <0.01             | 0.03                | 0.02              | 0.02                 | 0.02                | 0.01             | 0.04                     | 0.04                     | 0.02                         |
| 1,2,3,4,6,7,8-HpCDD       | 0.03              | 0.1                 | 0.12              | 0.12                 | 0.22                | 0.15             | 0.29                     | 0.14                     | 0.29                         |
| OCDD                      | 0.15              | 0.29                | 0.3               | 0.29                 | 0.75                | 0.54             | 0.69                     | 0.31                     | 1.13                         |
| 2,3,7,8-TCDF              | 0.03              | 0.9                 | 0.11              | 0.21                 | 0.14                | 0.65             | 0.16                     | 0.57                     | 0.13                         |
| 1,2,3,7,8-PeCDF           | <0.01             | 0.06                | 0.03              | 0.03                 | 0.07                | 0.02             | 0.04                     | 0.07                     | 0.04 i                       |
| 2,3,4,7,8-PeCDF           | 0.02              | 0.39                | 0.07 i            | 0.09                 | 0.1                 | 0.28             | 0.2                      | 0.3                      | 0.04 i                       |
| 1,2,3,4,7,8-HxCDF         | <0.01             | <0.01               | 0.01              | 0.02                 | 0.02                | 0.03             | 0.04                     | 0.01                     | 0.02                         |
| 1,2,3,6,7,8-HxCDF         | <0.01             | 0.02                | 0.01              | 0.01                 | 0.02                | 0.02             | 0.03                     | 0.04                     | 0.02                         |
| 1,2,3,7,8,9-HxCDF         | <0.01             | <0.01               | <0.01             | <0.01                | <0.01               | <0.01            | <0.01                    | <0.01                    | <0.01                        |
| 2,3,4,6,7,8-HxCDF         | <0.01             | 0.04                | 0.03              | 0.03                 | 0.03                | 0.02             | 0.07                     | 80.0                     | 0.01                         |
| 1,2,3,4,6,7,8-HpCDF       | <0.01             | <0.01               | 0.02              | 0.04                 | 0.04                | 0.05             | 0.06                     | 0.03                     | 0.07                         |
| 1,2,3,4,7,8,9-HpCDF       | <0.01             | <0.01               | <0.01             | <0.01                | <0.01               | <0.01            | 0.02                     | <0.01                    | <0.01                        |
| OCDF                      | 0.01              | 0.02                | 0.02              | 0.05                 | 0.05                | 0.06             | 0.07                     | 0.03                     | 0.07                         |
| WHO-TEQ 2005 (pg/g) lower | 0.01              | 0.31                | 0.08              | 0.08                 | 0.10                | 0.20             | 0.15                     | 0.28                     | 0.06                         |
| WHO-TEQ 2005 (pg/g) upper | 0.04              | 0.32                | 0.09              | 0.09                 | 0.10                | 0.21             | 0.16                     | 0.28                     | 0.07                         |

FSAS -2014 18 of 38



Table 3.1 PCDD/Fs (dioxins) concentrations - Lipid weight

| OEC Reference No.         | 22285             | 22287               | 22419             | 22433                | 22453               | 22457            | 22546                    | 22549                    | 22588                           |
|---------------------------|-------------------|---------------------|-------------------|----------------------|---------------------|------------------|--------------------------|--------------------------|---------------------------------|
| Fera LIMS Sample No.      | S14-009687        | S14-009689          | S14-010001        | S14-010267           | S14-010540          | S14-010830       | S14-011294               | S14-011297               | S14-011395                      |
| Sample Type               | Common<br>Mussels | Pacific<br>Oysters  | Common<br>Mussels | Common<br>Mussels    | Common<br>Mussels   | Razors           | Common<br>Mussels        | Pacific<br>Oysters       | Razors                          |
| Production area           | Dornoch<br>Firth  | Fairlie             | Loch Sunar        | Clift Sound<br>Houss | Loch Leven<br>Lower | Meikle<br>Craigs | Ardcastle<br>Bay Mussels | Ardcastle<br>Bay Oysters | Forth<br>Estuary -<br>Largo Bay |
| Site name                 | Dornoch<br>Firth  | Southannan<br>Sands | Liddesdale        | Clift Sound<br>Houss | Lower               | Silver Sands     | Bay Mussels              | Bay Oysters              | Largo Bay                       |
| Lipid weight pg/g         |                   |                     |                   |                      |                     |                  |                          |                          |                                 |
| 2,3,7,8-TCDD              | 0.63              | 2.42 i              | 1.02              | 0.65 i               | 1.88 i              | 1.57             | 0.73                     | 0.02                     | 0.61                            |
| 1,2,3,7,8-PeCDD           | 1.52              | 4.76                | 2.87              | 2.16                 | 4.05                | 1.69             | 5.17                     | 80.0                     | 1.32                            |
| 1,2,3,4,7,8-HxCDD         | 1.73              | 1.4                 | 1.84              | 1.07                 | 3.47                | 1.38             | 3.87                     | 0.03                     | 0.59                            |
| 1,2,3,6,7,8-HxCDD         | 1.18              | 3.68                | 3.02              | 2.63                 | 4.84                | 1.99             | 7.01                     | 0.07                     | 2.78                            |
| 1,2,3,7,8,9-HxCDD         | 0.6 i             | 2.35                | 2.16              | 1.56                 | 3.22                | 0.99             | 4.62                     | 0.04                     | 1.28                            |
| 1,2,3,4,6,7,8-HpCDD       | 9.43              | 8.09                | 13.74             | 12.14                | 32.94               | 10.98            | 34.89                    | 0.14                     | 22.66                           |
| OCDD                      | 44.37             | 24.45               | 33.36             | 28.74                | 111.01              | 38.93            | 83.57                    | 0.31                     | 87.62                           |
| 2,3,7,8-TCDF              | 7.75              | 75.77               | 12.92             | 21.1                 | 20.51               | 46.38            | 19.12                    | 0.57                     | 10.28                           |
| 1,2,3,7,8-PeCDF           | 2.05              | 5.23                | 3.13              | 2.9                  | 10.04               | 1.76             | 4.88                     | 0.07                     | 3.39 i                          |
| 2,3,4,7,8-PeCDF           | 6.04              | 33.04               | 7.84 i            | 9.39                 | 14.63               | 19.9             | 23.62                    | 0.3                      | 3.37 i                          |
| 1,2,3,4,7,8-HxCDF         | 0.92              | 0.13                | 1.21              | 1.62                 | 3.68                | 1.98             | 4.6                      | 0.01                     | 1.25                            |
| 1,2,3,6,7,8-HxCDF         | 0.81              | 1.83                | 1.34              | 1.47                 | 2.75                | 1.16             | 3.84                     | 0.04                     | 1.25                            |
| 1,2,3,7,8,9-HxCDF         | <0.24             | 0.18                | 0.18 i            | <0.1                 | 0.55                | 0.41             | 0.9                      | <0.01                    | <0.1                            |
| 2,3,4,6,7,8-HxCDF         | 1.08              | 3.23                | 2.87              | 3.01                 | 5.16                | 1.74             | 8.52                     | 0.08                     | 0.99                            |
| 1,2,3,4,6,7,8-HpCDF       | 1.89              | 0.84                | 2.05              | 3.6                  | 6.54                | 3.76             | 7.63                     | 0.03                     | 5.73                            |
| 1,2,3,4,7,8,9-HpCDF       | <0.21             | 0.13                | 0.3               | 0.59                 | 1.05                | 0.31             | 2.73                     | <0.01                    | <0.21                           |
| OCDF                      | 3.44              | 1.45                | 2.49              | 5.49                 | 7.52                | 4.09             | 8.17                     | 0.03                     | 5.43                            |
| WHO-TEQ 2005 (pg/g) lower | 5.56              | 26.20               | 9.06              | 9.13                 | 15.48               | 15.05            | 18.86                    | 0.28                     | 5.20                            |
| WHO-TEQ 2005 (pg/g) upper | 5.58              | 26.20               | 9.06              | 9.14                 | 15.48               | 15.05            | 18.86                    | 0.28                     | 5.21                            |

FSAS -2014 19 of 38



Table 3.2 Non-ortho PCB concentrations

| OEC Reference No.         | 22285             | 22287               | 22419             | 22433                | 22453               | 22457            | 22546                    | 22549                    | 22588                           |
|---------------------------|-------------------|---------------------|-------------------|----------------------|---------------------|------------------|--------------------------|--------------------------|---------------------------------|
| FERA LIMS Sample No.      | S14-009687        | S14-009689          | S14-010001        | S14-010267           | S14-010540          | S14-010830       | S14-011294               | S14-011297               | S14-011395                      |
| Sample type               | Common<br>Mussels | Pacific<br>Oysters  | Common<br>Mussels | Common<br>Mussels    | Common<br>Mussels   | Razors           | Common<br>Mussels        | Pacific<br>Oysters       | Razors                          |
| Production area           | Dornoch<br>Firth  | Fairlie             | Loch Sunar        | Clift Sound<br>Houss | Loch Leven<br>Lower | Meikle<br>Craigs | Ardcastle<br>Bay Mussels | Ardcastle<br>Bay Oysters | Forth<br>Estuary -<br>Largo Bay |
| Site name                 | Dornoch<br>Firth  | Southannan<br>Sands | Liddesdale        | Clift Sound<br>Houss | Lower               | Silver Sands     | Bay Mussels              | Bay Oysters              | Largo Bay                       |
| Whole Weight pg/g         |                   |                     |                   |                      |                     |                  |                          |                          |                                 |
| PCB77                     | 1.28              | 19.45               | 1.94              | 4.94                 | 1.26                | 28.35            | 2.77                     | 9.77                     | 6.76                            |
| PCB81                     | 0.03              | 0.81                | 0.07              | 0.12                 | 0.07                | 1.07             | 0.03                     | 0.49                     | 0.63                            |
| PCB126                    | 0.09              | 1.17                | 0.25              | 0.72                 | 0.23                | 1.09             | 0.34                     | 0.82                     | 0.54                            |
| PCB169                    | 0.02              | 0.16                | 0.09              | 0.11                 | 0.10                | 0.11             | 0.09                     | 0.16                     | 0.12                            |
| WHO-TEQ 2005 (pg/g) lower | 0.01              | 0.12                | 0.03              | 0.08                 | 0.03                | 0.12             | 0.04                     | 0.09                     | 0.06                            |
| WHO-TEQ 2005 (pg/g) upper | 0.01              | 0.12                | 0.03              | 0.08                 | 0.03                | 0.12             | 0.04                     | 0.09                     | 0.06                            |
|                           |                   |                     |                   |                      |                     |                  |                          |                          |                                 |
| Lipid Weight pg/g         |                   |                     |                   |                      |                     |                  |                          |                          |                                 |
| PCB77                     | 381.21            | 1644.67             | 218.60            | 495.91               | 187.49              | 2027.31          | 335.88                   | 943.87                   | 525.45                          |
| PCB81                     | 9.53              | 68.33               | 8.41              | 11.74                | 9.81                | 76.16            | 3.55                     | 47.72                    | 49.31                           |
| PCB126                    | 25.60             | 99.03               | 28.66             | 72.31                | 34.67               | 78.04            | 40.92                    | 79.15                    | 41.75                           |
| PCB169                    | 7.17              | 13.62               | 10.38             | 11.00                | 15.20               | 7.94             | 10.47                    | 15.73                    | 8.96                            |
| WHO-TEQ 2005 (pg/g) lower | 2.82              | 10.50               | 3.20              | 7.61                 | 3.94                | 8.27             | 4.44                     | 8.50                     | 4.51                            |
| WHO-TEQ 2005 (pg/g) upper | 2.82              | 10.50               | 3.20              | 7.61                 | 3.94                | 8.27             | 4.44                     | 8.50                     | 4.51                            |

FSAS -2014 20 of 38



Table 3.3 Ortho PCB concentrations - Whole weight

| OEC Reference No.          | 22285             | 22287               | 22419             | 22433                | 22453               | 22457            | 22546                    | 22549                    | 22588                  |
|----------------------------|-------------------|---------------------|-------------------|----------------------|---------------------|------------------|--------------------------|--------------------------|------------------------|
| FERA LIMS Sample No.       | S14-009687        | S14-009689          | S14-010001        | S14-010267           | S14-010540          | S14-010830       | S14-011294               | S14-011297               | S14-011395             |
| Sample type                | Common<br>Mussels | Pacific<br>Oysters  | Common<br>Mussels | Common<br>Mussels    | Common<br>Mussels   | Razors           | Common<br>Mussels        | Pacific<br>Oysters       | Razors<br>Forth        |
| Production area            | Dornoch<br>Firth  | Fairlie             | Loch Sunar        | Clift Sound<br>Houss | Loch Leven<br>Lower | Meikle<br>Craigs | Ardcastle<br>Bay Mussels | Ardcastle<br>Bay Oysters | Estuary -<br>Largo Bay |
| Site name                  | Dornoch<br>Firth  | Southannan<br>Sands | Liddesdale        | Clift Sound<br>Houss | Lower               | Silver Sands     | Bay Mussels              | Bay Oysters              | Largo Bay              |
| Whole weight µg/kg         |                   |                     |                   |                      |                     |                  | ·                        |                          | 0 ,                    |
| PCB18                      | <0.01             | <0.01               | < 0.01            | <0.01                | < 0.01              | 0.02             | < 0.01                   | < 0.01                   | 0.02                   |
| PCB28                      | <0.01             | 0.06                | < 0.01            | 0.01                 | < 0.01              | 0.11             | < 0.01                   | 0.02                     | 0.05                   |
| PCB31                      | <0.01             | 0.04                | < 0.01            | <0.01                | < 0.01              | 0.08             | < 0.01                   | 0.02                     | 0.04                   |
| PCB47                      | <0.01             | 0.06                | <0.01             | <0.01                | < 0.01              | 0.11             | <0.01                    | 0.03                     | 0.03                   |
| PCB49                      | <0.01             | 0.10                | <0.01             | 0.02                 | < 0.01              | 0.17             | 0.01                     | 0.04                     | 0.05                   |
| PCB51                      | <0.01             | <0.01               | < 0.01            | <0.01                | < 0.01              | 0.01             | < 0.01                   | < 0.01                   | < 0.01                 |
| PCB52                      | <0.01             | 0.16                | <0.01             | 0.03                 | 0.01                | 0.25             | 0.02                     | 0.06                     | 0.08                   |
| PCB99                      | <0.01             | 0.23                | 0.02              | 0.06                 | 0.02                | 0.27             | 0.03                     | 0.11                     | 0.08                   |
| PCB101                     | 0.01              | 0.41                | 0.03              | 0.15                 | 0.03                | 0.48             | 0.07                     | 0.18                     | 0.17                   |
| PCB105                     | <0.01             | 0.10                | < 0.01            | 0.04                 | < 0.01              | 0.12             | 0.02                     | 0.05                     | 0.04                   |
| PCB114                     | <0.01             | <0.01               | <0.01             | < 0.01               | < 0.01              | <0.01            | <0.01                    | <0.01                    | <0.01                  |
| PCB118                     | 0.01              | 0.33                | 0.03              | 0.13                 | 0.02                | 0.37             | 0.05                     | 0.15                     | 0.11                   |
| PCB123                     | <0.01             | 0.01                | < 0.01            | <0.01                | < 0.01              | <0.01            | < 0.01                   | < 0.01                   | < 0.01                 |
| PCB128                     | <0.01             | 0.06                | < 0.01            | 0.03                 | < 0.01              | 0.09             | 0.02                     | 0.03                     | 0.03                   |
| PCB138                     | 0.02              | 0.68                | 0.07              | 0.20                 | 0.07                | 0.71             | 0.16                     | 0.33                     | 0.24                   |
| PCB153                     | 0.03              | 1.01                | 0.09              | 0.21                 | 0.09                | 0.84             | 0.19                     | 0.49                     | 0.26                   |
| PCB156                     | <0.01             | 0.02                | < 0.01            | <0.01                | < 0.01              | 0.02             | < 0.01                   | < 0.01                   | < 0.01                 |
| PCB157                     | <0.01             | 0.01                | < 0.01            | <0.01                | < 0.01              | <0.01            | < 0.01                   | < 0.01                   | < 0.01                 |
| PCB167                     | <0.01             | 0.02                | <0.01             | < 0.01               | < 0.01              | 0.01             | <0.01                    | 0.01                     | <0.01                  |
| PCB180                     | <0.01             | 0.10                | < 0.01            | <0.01                | < 0.01              | 0.01             | 0.02                     | 0.04                     | < 0.01                 |
| PCB189                     | <0.01             | <0.01               | <0.01             | <0.01                | <0.01               | <0.01            | <0.01                    | <0.01                    | <0.01                  |
| SUM of ICES 6(µg/kg) lower | 0.06              | 2.42                | 0.19              | 0.60                 | 0.20                | 2.40             | 0.46                     | 1.12                     | 0.80                   |
| SUM of ICES 6(µg/kg) upper | 0.09              | 2.42                | 0.22              | 0.61                 | 0.22                | 2.40             | 0.47                     | 1.12                     | 0.81                   |
| WHO-TEQ 2005 (pg/g) lower  | <0.01             | 0.01                | <0.01             | 0.01                 | <0.01               | 0.02             | <0.01                    | 0.01                     | <0.01                  |
| WHO-TEQ 2005 (pg/g) upper  | <0.01             | 0.02                | <0.01             | 0.01                 | <0.01               | 0.02             | <0.01                    | 0.01                     | 0.01                   |

FSAS -2014 21 of 38



Table 3.3 Ortho PCB concentrations - Lipid weight

| OEC Reference No.          | 22285             | 22287                 | 22419             | 22433                | 22453             | 22457            | 22546             | 22549              | 22588      |
|----------------------------|-------------------|-----------------------|-------------------|----------------------|-------------------|------------------|-------------------|--------------------|------------|
| FERA LIMS Sample No.       | S14-009687        | S14-009689            | S14-010001        | S14-010267           | S14-010540        | S14-010830       | S14-011294        | S14-011297         | S14-011395 |
| Sample type                | Common<br>Mussels | Pacific<br>Oysters    | Common<br>Mussels | Common<br>Mussels    | Common<br>Mussels | Razors           | Common<br>Mussels | Pacific<br>Oysters | Razors     |
|                            |                   | 0,0.0.0               |                   |                      |                   |                  | Ardcastle         | ·                  | Forth      |
| Production area            | Dornoch           | E                     |                   | Clift Sound          | Loch Leven        | Meikle           | Bay               | Ardcastle          | Estuary -  |
|                            | Firth<br>Dornoch  | Fairlie<br>Southannan | Loch Sunar        | Houss<br>Clift Sound | Lower             | Craigs<br>Silver | Mussels<br>Bay    | Bay Oysters        | Largo Bay  |
| Site name                  | Firth             | Sands                 | Liddesdale        | Houss                | Lower             | Sands            | Mussels           | Bay Oysters        | Largo Bay  |
| Lipid weight µg/kg         |                   |                       |                   |                      |                   |                  |                   |                    |            |
| PCB18                      | 0.92              | 0.81                  | 0.17              | 0.32                 | 0.40              | 1.41             | 0.30              | 0.45               | 1.25       |
| PCB28                      | 1.80              | 4.84                  | 0.52              | 1.00                 | 0.99              | 7.75             | 1.13              | 2.40               | 3.61       |
| PCB31                      | 1.43              | 3.72                  | 0.36              | 0.70                 | 0.79              | 5.96             | 0.76              | 1.66               | 2.88       |
| PCB47                      | 1.03              | 5.24                  | 0.49              | 0.92                 | 0.69              | 7.57             | 1.13              | 2.94               | 1.95       |
| PCB49                      | 1.70              | 8.57                  | 0.67              | 1.60                 | 1.01              | 12.22            | 1.51              | 4.04               | 3.56       |
| PCB51                      | 0.14              | 0.54                  | 0.03              | 0.06                 | 0.09              | 0.73             | 0.07              | 0.30               | 0.24       |
| PCB52                      | 2.90              | 13.50                 | 1.07              | 3.36                 | 1.71              | 17.53            | 2.54              | 6.04               | 5.89       |
| PCB99                      | 1.86              | 19.66                 | 2.00              | 6.24                 | 2.29              | 19.07            | 4.24              | 10.86              | 5.95       |
| PCB101                     | 4.20              | 34.34                 | 3.61              | 14.86                | 4.03              | 34.13            | 8.06              | 17.13              | 13.27      |
| PCB105                     | 1.02              | 8.49                  | 0.88              | 3.55                 | 1.00              | 8.83             | 1.97              | 4.62               | 2.95       |
| PCB114                     | 0.06              | 0.42                  | 0.05              | 0.10                 | 0.05              | 0.34             | 0.11              | 0.22               | 0.19       |
| PCB118                     | 3.04              | 27.52                 | 2.88              | 13.40                | 3.32              | 26.12            | 6.18              | 14.27              | 8.34       |
| PCB123                     | 0.06              | 1.09                  | 0.07              | 0.19                 | 0.11              | 0.67             | 0.26              | 0.40               | 0.19       |
| PCB128                     | 0.64              | 4.91                  | 0.88              | 3.48                 | 1.13              | 6.60             | 2.10              | 2.75               | 2.65       |
| PCB138                     | 6.00              | 57.75                 | 7.67              | 20.53                | 10.25             | 51.00            | 19.66             | 32.13              | 18.81      |
| PCB153                     | 7.47              | 85.37                 | 10.13             | 21.41                | 13.47             | 59.74            | 23.55             | 47.42              | 20.58      |
| PCB156                     | 0.26              | 1.37                  | 0.27              | 0.94                 | 0.39              | 1.41             | 0.76              | 0.62               | 0.55       |
| PCB157                     | 0.09              | 0.94                  | 0.12              | 0.37                 | 0.18              | 0.45             | 0.27 i            | 0.45               | 0.26       |
| PCB167                     | 0.22              | 1.92                  | 0.24              | 0.79                 | 0.31              | 0.93             | 0.59              | 1.02               | 0.57       |
| PCB180                     | 0.35              | 8.54                  | 0.56              | 0.66                 | 1.04              | 0.87             | 2.03              | 4.13               | 0.36       |
| PCB189                     | 0.04              | <0.07                 | <0.04             | 0.09                 | 0.06              | 0.12             | <0.07             | <0.04              | <0.02      |
| SUM of ICES 6(µg/kg) lower | 22.72             | 204.34                | 23.56             | 61.82                | 31.49             | 171.02           | 56.97             | 109.25             | 62.52      |
| SUM of ICES 6(µg/kg) upper | 22.72             | 204.34                | 23.56             | 61.82                | 31.49             | 171.02           | 56.97             | 109.25             | 62.52      |
| WHO-TEQ 2005 (pg/g) lower  | 0.14              | 1.25                  | 0.14              | 0.58                 | 0.16              | 1.17             | 0.30              | 0.65               | 0.39       |
| WHO-TEQ 2005 (pg/g) upper  | 0.14              | 1.25                  | 0.14              | 0.58                 | 0.16              | 1.17             | 0.31              | 0.65               | 0.39       |

FSAS -2014 22 of 38



Table 3.4 Summary of PCDD/F and PCB WHO-TEQ, and ICES-6 concentrations

| OEC Reference No.                                               | 22285             | 22287               | 22419             | 22433                | 22453               | 22457            | 22546                       | 22549                    | 22588                           |
|-----------------------------------------------------------------|-------------------|---------------------|-------------------|----------------------|---------------------|------------------|-----------------------------|--------------------------|---------------------------------|
| FERA LIMS Sample No.                                            | S14-009687        | S14-009689          | S14-010001        | S14-010267           | S14-010540          | S14-010830       | S14-011294                  | S14-011297               | S14-011395                      |
| Sample type                                                     | Common<br>Mussels | Pacific<br>Oysters  | Common<br>Mussels | Common<br>Mussels    | Common<br>Mussels   | Razors           | Common<br>Mussels           | Pacific<br>Oysters       | Razors                          |
| Production area                                                 | Dornoch<br>Firth  | Fairlie             | Loch Sunar        | Clift Sound<br>Houss | Loch Leven<br>Lower | Meikle<br>Craigs | Ardcastle<br>Bay<br>Mussels | Ardcastle<br>Bay Oysters | Forth<br>Estuary -<br>Largo Bay |
| Site name                                                       | Dornoch<br>Firth  | Southannan<br>Sands | Liddesdale        | Clift Sound<br>Houss | Lower               | Silver<br>Sands  | Bay<br>Mussels              | Bay Oysters              | Largo Bay                       |
| Fat content (% whole)                                           | 0.34              | 1.18                | 0.89              | 1.00                 | 0.67                | 1.40             | 0.83                        | 1.04                     | 1.29                            |
| WHO TEQ 2005 pg/g whole                                         |                   |                     |                   |                      |                     |                  |                             |                          |                                 |
| Dioxin                                                          | 0.04              | 0.32                | 0.09              | 0.09                 | 0.1                 | 0.21             | 0.16                        | 0.28                     | 0.07                            |
| non ortho-PCB                                                   | 0.01              | 0.12                | 0.03              | 0.08                 | 0.03                | 0.12             | 0.04                        | 0.09                     | 0.06                            |
| ortho-PCB                                                       | <0.01             | 0.02                | <0.01             | 0.01                 | <0.01               | 0.02             | <0.01                       | 0.01                     | 0.01                            |
| Sum of WHO TEQs (upper)                                         | 0.06              | 0.46                | 0.16              | 0.18                 | 0.14                | 0.35             | 0.21                        | 0.38                     | 0.14                            |
| WHO TEQ 2005 pg/g Lipid                                         |                   |                     |                   |                      |                     |                  |                             |                          |                                 |
| Dioxin                                                          | 5.58              | 26.2                | 9.06              | 9.14                 | 15.48               | 15.05            | 18.86                       | 26.44                    | 5.21                            |
| non ortho-PCB                                                   | 2.82              | 10.50               | 3.20              | 7.61                 | 3.94                | 8.27             | 4.44                        | 8.50                     | 4.51                            |
| ortho-PCB                                                       | 0.14              | 1.25                | 0.14              | 0.58                 | 0.16                | 1.17             | 0.31                        | 0.65                     | 0.39                            |
| Sum of WHO TEQs (upper)                                         | 8.54              | 37.95               | 12.40             | 17.33                | 19.58               | 24.49            | 23.61                       | 35.59                    | 10.11                           |
| 01114 - 61050 0//                                               |                   |                     |                   |                      |                     |                  |                             |                          |                                 |
| SUM of ICES 6 µg/kg whole<br>(upper)<br>SUM of ICES 6 µg/kg fat | 0.09              | 2.42                | 0.22              | 0.61                 | 0.22                | 2.40             | 0.47                        | 1.12                     | 0.81                            |
| (upper)                                                         | 22.72             | 204.34              | 23.56             | 61.82                | 31.49               | 171.02           | 56.97                       | 109.25                   | 62.52                           |

FSAS -2014 23 of 38



Table 3.5 PAH concentrations (µg/kg whole weight)

Note: results marked with an "i" are indicative

| OEC Reference No.               | 22254             | 22255                           | 22256                            | 22257             | 22258             | 22259                               |
|---------------------------------|-------------------|---------------------------------|----------------------------------|-------------------|-------------------|-------------------------------------|
| Fera LIMS Sample No.            | S14-<br>008357    | S14-<br>008358                  | S14-<br>008359                   | S14-<br>008360    | S14-<br>008361    | S14-<br>008362                      |
| Sample type                     | Native<br>Oysters | Surf Clams                      | Surf<br>Clams                    | Common<br>Mussels | Razors            | Pacific<br>Oysters                  |
| Production area                 | Loch Ryan         | Forth<br>Estuary -<br>Pittenwee | Forth<br>Estuary -<br>Anstruther | Mid Yell<br>Voe   | Ferness<br>bay    | Loch<br>Spelve -<br>Croggan<br>Pier |
| Site name                       | Loch Ryan         | Pittenweem Surfs,               | Anstruther                       | Camb              | Ferness<br>Razors | Croggan<br>Pier                     |
| μg/kg whole weight              |                   |                                 |                                  |                   |                   |                                     |
| acenaphthylene                  | 0.37              | 0.43                            | 0.20                             | 0.51              | 0.33              | 0.10                                |
| acenaphthene                    | <0.61             | <0.61                           | <0.61                            | <0.58             | < 0.47            | < 0.61                              |
| fluorene                        | <0.68             | <0.68                           | <0.68                            | < 0.65            | <0.48             | <0.68                               |
| phenanthrene                    | 3.35              | 1.36                            | <1.12                            | <1.00             | <0.7              | <1.12                               |
| anthracene                      | 0.27              | 0.38                            | 0.30                             | 0.09              | < 0.04            | <0.08                               |
| fluoranthene                    | 5.73i             | 2.05i                           | 1.68                             | 0.58              | 0.94              | 2.16i                               |
| benzo[c]fluorene                | 0.29              | 0.14                            | 0.13                             | 0.03              | 0.05              | 0.14                                |
| pyrene                          | 3.56i             | 2.03i                           | 1.78i                            | 0.81              | 0.62              | 1.59i                               |
| benzo[ghi]fluoranthene          | 1.36              | 0.42                            | 0.38                             | 0.21              | 0.31              | 1.08                                |
| benz (a) anthracene             | 1.72              | 0.92                            | 0.84                             | 0.21              | 0.22              | 0.76                                |
| benzo[b]naphtho[2,1-d]thiophene | 0.40              | 0.11                            | 0.09                             | 0.05              | 0.06              | 0.14                                |
| cyclopenta[c,d]pyrene           | 0.05              | 0.03                            | 0.02                             | 0.02              | <0.01             | 0.14                                |
| chrysene                        | 1.85              | 0.88                            | 0.78                             | 0.25              | 0.36              | 1.16                                |
| 5-methylchrysene                | <0.01             | <0.01                           | <0.01                            | <0.01             | <0.01             | < 0.01                              |
| benzo[b]fluoranthene            | 3.69              | 0.91                            | 0.82                             | 0.46              | 0.60              | 2.95                                |
| benzo[j]fluoranthene            | 1.38              | 0.45                            | 0.40                             | 0.19              | 0.22              | 0.79                                |
| benzo[k]fluoranthene            | 4.07              | 0.49                            | 0.42                             | 0.18              | 0.24              | 1.11                                |
| benzo[e]pyrene                  | 2.77              | 1.23                            | 1.13                             | 0.58              | 0.58              | 2.65                                |
| benzo[a]pyrene                  | 0.95              | 0.75                            | 0.67                             | 0.16              | 0.13              | 0.45                                |
| indeno[1,2,3-cd]pyrene          | 1.21              | 0.67                            | 0.62                             | 0.18              | 0.18              | 0.50                                |
| dibenz[ah]anthracene            | 0.26              | <0.13                           | <0.12                            | < 0.05            | < 0.04            | <0.14                               |
| benzo-[g,h,i]perylene           | 1.20              | 0.94                            | 0.89                             | 0.27              | 0.18              | 0.59                                |
| anthanthrene                    | <0.1              | <0.1                            | <0.1                             | <0.1              | <0.1              | <0.1                                |
| dibenzo[a,l]pyrene              | <0.1              | <0.1                            | <0.1                             | <0.1              | <0.1              | <0.1                                |
| dibenzo[a,e]pyrene              | <0.1              | 0.10i                           | <0.1                             | <0.1              | <0.1              | <0.1                                |
| dibenzo[a,i]pyrene              | <0.1              | 0.11i                           | <0.1                             | <0.1              | <0.1              | <0.1                                |
| dibenzo[a,h]pyrene              | <0.1              | <0.1                            | <0.1                             | <0.1              | <0.1              | <0.1                                |
| coronene                        | <0.1              | <0.1                            | <0.1                             | <0.1              | <0.1              | <0.1                                |
| PAH 4 Sum Lower μg/kg           | 8.21              | 3.46                            | 3.11                             | 1.08              | 1.31              | 5.32                                |
| PAH 4 Sum Upper µg/kg           | 8.21              | 3.46                            | 3.11                             | 1.08              | 1.31              | 5.32                                |

FSAS -2014 24 of 38



| OEC Reference No.               | 22260                                                 | 22261          | 22262                   | 22833                                | 22267             | 22285             |
|---------------------------------|-------------------------------------------------------|----------------|-------------------------|--------------------------------------|-------------------|-------------------|
| Fera LIMS Sample No.            | S14-<br>009098                                        | S14-<br>009099 | S14-<br>009165          | S14-<br>029692                       | S14-<br>009647    | S14-<br>009687    |
| Sample type                     | Common<br>Mussels                                     | Razors         | Queen<br>Scallops       | Queen<br>Scallops<br>(Re-<br>sample) | Common<br>Mussels | Common<br>Mussels |
| Production area                 | Vaila<br>Sound:<br>East of<br>Linga and<br>Galtaskerr | West Jura      | Loch Fyne<br>Stonefield | Loch Fyne<br>Stonefield              | Loch<br>Inchard   | Dornoch<br>Firth  |
| Site name                       | Whitesness                                            | Jura           | North Bay               | North Bay                            | Loch<br>Inchard   | Dornoch<br>Firth  |
| μg/kg whole weight              |                                                       |                |                         |                                      |                   |                   |
| acenaphthylene                  | 0.10                                                  | 0.16           | 1.92                    | 0.57                                 | <0.19             | 0.39              |
| acenaphthene                    | <0.61                                                 | <0.57          | < 0.72                  | < 0.45                               | <0.58             | <0.48             |
| fluorene                        | <0.68                                                 | <0.64          | <0.8                    | <0.48                                | 1.16              | < 0.49            |
| phenanthrene                    | <1.12                                                 | <1.00          | 2.89                    | 1.77                                 | 7.12              | <0.71             |
| anthracene                      | <0.08                                                 | <0.06          | 0.60                    | 0.20                                 | 0.24              | <0.04             |
| fluoranthene                    | <0.41                                                 | 1.75           | 9.36                    | 1.78                                 | 1.77i             | 0.50              |
| benzo[c]fluorene                | 0.02                                                  | 0.09           | 0.61                    | 0.08                                 | 0.32              | 0.04              |
| pyrene                          | 0.36i                                                 | 0.98           | 9.70i                   | 1.02                                 | 2.75i             | 0.51              |
| benzo[ghi]fluoranthene          | 0.12                                                  | 0.52           | 4.72                    | 1.14                                 | 0.44              | 0.16              |
| benz (a) anthracene             | 0.10                                                  | 0.46           | 4.54                    | 0.39                                 | 0.41              | 0.13              |
| benzo[b]naphtho[2,1-d]thiophene | 0.03                                                  | 0.11           | 0.70                    | 0.12                                 | 0.25              | <0.03             |
| cyclopenta[c,d]pyrene           | <0.01                                                 | 0.01           | 0.36                    | 0.39                                 | 0.02              | <0.01             |
| chrysene                        | 0.14                                                  | 0.73           | 5.11                    | 0.63                                 | 0.95              | 0.20              |
| 5-methylchrysene                | <0.01                                                 | <0.01          | < 0.03                  | <0.01                                | <0.01             | <0.01             |
| benzo[b]fluoranthene            | 0.35                                                  | 1.38           | 10.70                   | 1.32                                 | 0.43              | 0.26              |
| benzo[j]fluoranthene            | 0.13                                                  | 0.50           | 5.40                    | 0.64                                 | 0.16              | 0.11              |
| benzo[k]fluoranthene            | 0.10                                                  | 0.60           | 5.62                    | 0.72                                 | 0.16              | 0.09              |
| benzo[e]pyrene                  | 0.35                                                  | 1.36           | 10.50                   | 1.38                                 | 0.71              | 0.23              |
| benzo[a]pyrene                  | 0.07                                                  | 0.32           | 5.45                    | 0.34                                 | 0.07              | 0.07              |
| indeno[1,2,3-cd]pyrene          | 0.15                                                  | 0.42           | 3.87                    | 0.39                                 | 0.12              | 0.12              |
| dibenz[ah]anthracene            | <0.03                                                 | <0.08          | 0.97                    | <0.08                                | <0.03             | < 0.03            |
| benzo-[g,h,i]perylene           | 0.22                                                  | 0.42           | 3.63                    | 0.30                                 | 0.18              | 0.15              |
| anthanthrene                    | <0.1                                                  | <0.1           | <0.1                    | <0.1                                 | <0.1              | <0.1              |
| dibenzo[a,l]pyrene              | <0.1                                                  | <0.1           | 0.14i                   | <0.1                                 | <0.1              | <0.1              |
| dibenzo[a,e]pyrene              | <0.1                                                  | <0.1           | 0.28i                   | <0.1                                 | <0.1              | <0.1              |
| dibenzo[a,i]pyrene              | <0.1                                                  | <0.1           | 0.17i                   | <0.1                                 | <0.1              | <0.1              |
| dibenzo[a,h]pyrene              | <0.1                                                  | <0.1           | <0.1                    | <0.1                                 | <0.1              | <0.1              |
| coronene                        | <0.1                                                  | <0.1           | <0.1                    | <0.1                                 | <0.1              | <0.1              |
| PAH 4 Sum Lower μg/kg           | 0.66                                                  | 2.89           | 25.80                   | 2.68                                 | 1.86              | 0.66              |
| PAH 4 Sum Upper μg/kg           | 0.66                                                  | 2.89           | 25.80                   | 2.68                                 | 1.86              | 0.66              |

FSAS -2014 25 of 38



| OEC Reference No.               | 22286          | 22287                | 22288                | 22289                       | 22353          | 22418          |
|---------------------------------|----------------|----------------------|----------------------|-----------------------------|----------------|----------------|
| Fera LIMS Sample No.            | S14-<br>009688 | S14-<br>009689       | S14-<br>009690       | S14-<br>009691              | S14-<br>009765 | S14-<br>010000 |
| Sample type                     | Razors         | Pacific<br>Oysters   | Common<br>Mussels    | Pacific<br>Oysters          | Common cockles | Common cockles |
| Production area                 | North Bay      | Fairlie              | East Loch<br>Tarbert | Loch Fyne<br>Otter<br>Ferry | Traigh<br>Mhar | North Ford     |
| Site name                       | Barassie       | Southann<br>an Sands | Sound of<br>Scalpey  | Balliemore                  | Traigh<br>Mhar | Ortir Mher     |
| μg/kg whole weight              |                |                      |                      |                             |                |                |
| acenaphthylene                  | 0.19           | 0.55                 | 0.37                 | 0.19                        | < 0.05         | <0.05          |
| acenaphthene                    | <0.58          | <0.48                | <0.58                | <0.58                       | <0.58          | <0.57          |
| fluorene                        | < 0.65         | < 0.49               | <0.65                | < 0.65                      | < 0.65         | <0.64          |
| phenanthrene                    | 1.39           | 2.75                 | <1.00                | <1.00                       | <1.00          | <1.00          |
| anthracene                      | 0.17           | 0.50                 | 0.10                 | 0.12                        | <0.06          | <0.06          |
| fluoranthene                    | 4.47           | 11.26i               | 1.24                 | 3.26i                       | < 0.42         | 0.60           |
| benzo[c]fluorene                | 0.27           | 0.68                 | 0.05                 | 0.21                        | 0.02           | 0.03           |
| pyrene                          | 3.53           | 10.56i               | 0.78                 | 3.10i                       | < 0.33         | 0.40i          |
| benzo[ghi]fluoranthene          | 1.14           | 3.56                 | 0.42                 | 1.23                        | 0.10           | 0.15           |
| benz (a) anthracene             | 1.58           | 4.05                 | 0.24                 | 1.05                        | 0.08           | 0.15           |
| benzo[b]naphtho[2,1-d]thiophene | 0.28           | 0.75                 | 0.07                 | 0.22                        | 0.02           | 0.04           |
| cyclopenta[c,d]pyrene           | 0.03           | 0.17                 | 0.02                 | 0.08                        | <0.01          | <0.01          |
| chrysene                        | 1.72           | 4.68                 | 0.32                 | 1.55                        | 0.18           | 0.32           |
| 5-methylchrysene                | <0.01          | <0.01                | <0.01                | <0.01                       | <0.01          | <0.01          |
| benzo[b]fluoranthene            | 2.22           | 7.17                 | 0.65                 | 2.53                        | 0.19           | 0.27           |
| benzo[j]fluoranthene            | 0.99           | 2.35                 | 0.24                 | 0.79                        | 0.11           | 0.15           |
| benzo[k]fluoranthene            | 1.13           | 3.48                 | 0.24                 | 1.03                        | 0.11           | 0.15           |
| benzo[e]pyrene                  | 2.54           | 7.49                 | 1.20                 | 2.68                        | 0.22           | 0.24           |
| benzo[a]pyrene                  | 1.02           | 2.34                 | 0.13                 | 0.52                        | 0.06           | 0.12           |
| indeno[1,2,3-cd]pyrene          | 0.62           | 1.24                 | 0.25                 | 0.44                        | 0.14           | 0.19           |
| dibenz[ah]anthracene            | <0.12          | 0.37                 | <0.05                | <0.12                       | <0.04          | < 0.05         |
| benzo-[g,h,i]perylene           | 0.68           | 1.77                 | 0.43                 | 0.56                        | 0.10           | 0.14           |
| anthanthrene                    | <0.1           | <0.1                 | <0.1                 | <0.1                        | <0.1           | <0.1           |
| dibenzo[a,l]pyrene              | <0.1           | <0.1                 | <0.1                 | <0.1                        | <0.1           | <0.1           |
| dibenzo[a,e]pyrene              | <0.1           | <0.1                 | <0.1                 | <0.1                        | <0.1           | <0.1           |
| dibenzo[a,i]pyrene              | <0.1           | <0.1                 | <0.1                 | <0.1                        | <0.1           | <0.1           |
| dibenzo[a,h]pyrene              | <0.1           | <0.1                 | <0.1                 | <0.1                        | <0.1           | <0.1           |
| coronene                        | <0.1           | <0.1                 | <0.1                 | <0.1                        | <0.1           | <0.1           |
| PAH 4 Sum Lower μg/kg           | 6.54           | 18.24                | 1.34                 | 5.65                        | 0.51           | 0.86           |
| PAH 4 Sum Upper μg/kg           | 6.54           | 18.24                | 1.34                 | 5.65                        | 0.51           | 0.86           |

FSAS -2014 26 of 38



| OEC Referencee No.<br>Fera LIMS Sample No. | 22419<br>S14-<br>010001 | 22420<br>\$14-<br>010002 | 22432<br>S14-<br>010197           | 22433<br>S14-<br>010267 | 22434<br>S14-<br>010268  | 22451<br>S14-<br>010538 |
|--------------------------------------------|-------------------------|--------------------------|-----------------------------------|-------------------------|--------------------------|-------------------------|
| Sample type                                | Common<br>Mussels       | Common<br>Mussels        | King<br>Scallops                  | Common<br>Mussels       | Common<br>Mussels        | Common<br>Mussels       |
| Production area                            | Loch<br>Sunar           | Loch<br>Leurbost         | Loch<br>Ewe &<br>Loch<br>Thurnaig | Clift<br>Sound<br>Houss | Clift<br>Sound:<br>Booth | Olna Firth<br>Inner     |
| Site name                                  | Liddesdale              | Eilean<br>Miavaig        | Loch<br>Ewe                       | Clift<br>Sound<br>Houss | Booth                    | Inner                   |
| μg/kg whole weight                         |                         |                          |                                   |                         |                          |                         |
| acenaphthylene                             | 0.68                    | 0.63                     | 0.39                              | 0.15                    | 0.85                     | < 0.2                   |
| acenaphthene                               | < 0.47                  | <0.58                    | < 0.47                            | <0.48                   | <0.58                    | < 0.45                  |
| fluorene                                   | <0.48                   | < 0.65                   | <0.48                             | < 0.49                  | < 0.65                   | <0.5                    |
| phenanthrene                               | < 0.7                   | <1.00                    | 0.71                              | 1.56                    | 2.26                     | 1.08                    |
| anthracene                                 | 0.05                    | 0.06                     | < 0.04                            | 0.06                    | 0.16                     | 0.06                    |
| fluoranthene                               | 1.21                    | 1.06                     | 1.57                              | 2.03                    | 3.92                     | 1.80                    |
| benzo[c]fluorene                           | 0.11                    | 0.06                     | 0.04                              | 0.11                    | 0.24                     | 0.10                    |
| pyrene                                     | 1.17                    | 0.90                     | 0.88                              | 1.45                    | 2.91                     | 1.66i                   |
| benzo[ghi]fluoranthene                     | 0.85                    | 0.39                     | 1.12                              | 0.99                    | 1.66                     | 1.05                    |
| benz (a) anthracene                        | 0.61                    | 0.27                     | 0.59                              | 0.65                    | 1.22                     | 0.97                    |
| benzo[b]naphtho[2,1-<br>d]thiophene        | 0.13                    | 0.06                     | 0.11                              | 0.11                    | 0.22                     | 0.15                    |
| cyclopenta[c,d]pyrene                      | 0.12                    | <0.01                    | 0.05                              | 0.17                    | <0.18                    | 0.11                    |
| chrysene                                   | 1.15                    | 0.37                     | 0.74                              | 1.42                    | 2.39                     | 1.92                    |
| 5-methylchrysene                           | <0.01                   | <0.01                    | <0.01                             | <0.01                   | < 0.06                   | <0.01                   |
| benzo[b]fluoranthene                       | 1.54                    | 0.74                     | 2.16                              | 1.70                    | 2.83                     | 2.36                    |
| benzo[j]fluoranthene                       | 0.65                    | 0.31                     | 0.79                              | 0.67                    | 1.18                     | 1.05                    |
| benzo[k]fluoranthene                       | 0.55                    | 0.28                     | 0.99                              | 0.55                    | 0.96                     | 0.85                    |
| benzo[e]pyrene                             | 1.63                    | 1.11                     | 1.15                              | 1.57                    | 3.29                     | 2.20                    |
| benzo[a]pyrene                             | 0.41                    | 0.16                     | 0.45                              | 0.29                    | 0.60                     | 0.57                    |
| indeno[1,2,3-cd]pyrene                     | 0.44                    | 0.33                     | 0.47                              | 0.57                    | 0.96                     | 0.77                    |
| dibenz[ah]anthracene                       | <0.09                   | <0.07                    | < 0.09                            | <0.08                   | <0.14                    | 0.11                    |
| benzo-[g,h,i]perylene                      | 0.66                    | 0.55                     | 0.36                              | 0.73                    | 1.10                     | 0.78                    |
| anthanthrene                               | <0.1                    | <0.1                     | <0.1                              | <0.1                    | <0.1                     | <0.1                    |
| dibenzo[a,l]pyrene                         | <0.1                    | <0.1                     | <0.1                              | <0.1                    | <0.1                     | <0.1                    |
| dibenzo[a,e]pyrene                         | <0.1                    | <0.1                     | <0.1                              | <0.1                    | <0.1                     | <0.1                    |
| dibenzo[a,i]pyrene                         | <0.1                    | <0.1                     | <0.1                              | <0.1                    | <0.1                     | <0.1                    |
| dibenzo[a,h]pyrene                         | <0.1                    | <0.1                     | <0.1                              | <0.1                    | <0.1                     | <0.1                    |
| coronene                                   | <0.1                    | <0.1                     | <0.1                              | <0.1                    | <0.1                     | <0.1                    |
| PAH 4 Sum Lower μg/kg                      | 3.71                    | 1.54                     | 3.94                              | 4.06                    | 7.04                     | 5.82                    |
| PAH 4 Sum Upper μg/kg                      | 3.71                    | 1.54                     | 3.94                              | 4.06                    | 7.04                     | 5.82                    |

FSAS -2014 27 of 38



| OEC Reference No.<br>Fera LIMS Sample No. | 22452<br>S14-          | 22453<br>S14-          | 22456<br>S14-         | 22838<br>S14-             | 22457<br>S14-    | 22839<br>S14-             |
|-------------------------------------------|------------------------|------------------------|-----------------------|---------------------------|------------------|---------------------------|
| r cra Envio Gampie 140.                   | 010539                 | 010540                 | 010829                | 029693                    | 010830           | 029852                    |
| Sample type                               | Common<br>Mussels      | Common<br>Mussels      | Razors                | Razors<br>(Re-<br>sample) | Razors           | Razors<br>(Re-<br>sample) |
| Production area                           | Loch<br>Leven<br>Upper | Loch<br>Leven<br>Lower | Stevenston<br>Sands   | Stevenson sands           | Meikle<br>Craigs | Meikle<br>Craigs          |
| Site name                                 | Upper                  | Lower                  | Stevenston<br>Sands 3 | Stevenson sands 3         | Silver<br>Sands  | Silver<br>Sands           |
| μg/kg whole weight                        |                        |                        |                       |                           |                  |                           |
| acenaphthylene                            | 0.20                   | < 0.13                 | 0.56                  | 0.15                      | 1.12             | 0.16                      |
| acenaphthene                              | <0.45                  | <0.48                  | <0.48                 | <0.46                     | <0.61            | < 0.45                    |
| fluorene                                  | < 0.49                 | < 0.49                 | < 0.49                | <0.48                     | <0.68            | <0.48                     |
| phenanthrene                              | 1.04                   | 0.75                   | 2.96                  | 0.94                      | 3.67             | 1.00                      |
| anthracene                                | 0.21                   | 0.10                   | 0.57                  | 0.10                      | 1.04             | 0.09                      |
| fluoranthene                              | 2.20                   | 1.67                   | 12.94                 | 1.43                      | 14.40i           | 1.51                      |
| benzo[c]fluorene                          | 0.21                   | 0.14                   | 1.02                  | 0.09                      | 0.81             | 0.08                      |
| pyrene                                    | 2.81i                  | 1.66i                  | 12.37                 | 0.73                      | 14.85i           | 0.73                      |
| benzo[ghi]fluoranthene                    | 1.30                   | 1.10                   | 3.56                  | 0.35                      | 3.98             | 0.35                      |
| benz (a) anthracene                       | 1.51                   | 1.09                   | 6.87                  | 0.41                      | 7.52             | 0.41                      |
| benzo[b]naphtho[2,1-d]thiophene           | 0.41                   | 0.27                   | 0.87                  | 0.11                      | 0.97             | 0.11                      |
| cyclopenta[c,d]pyrene                     | 0.08                   | 0.10                   | 0.15                  | 0.41                      | 0.15             | 0.42                      |
| chrysene                                  | 2.51                   | 1.78                   | 6.72                  | 0.55                      | 7.77             | 0.58                      |
| 5-methylchrysene                          | <0.01                  | < 0.01                 | <0.01                 | <0.01                     | <0.01            | <0.01                     |
| benzo[b]fluoranthene                      | 14.54                  | 6.41                   | 8.11                  | 0.51                      | 8.72             | 0.48                      |
| benzo[j]fluoranthene                      | 3.80                   | 1.89                   | 4.04                  | 0.22                      | 4.38             | 0.22                      |
| benzo[k]fluoranthene                      | 5.59                   | 2.42                   | 4.34                  | 0.25                      | 4.36             | 0.23                      |
| benzo[e]pyrene                            | 16.54                  | 6.04                   | 9.28                  | 0.65                      | 11.02            | 0.63                      |
| benzo[a]pyrene                            | 4.88                   | 1.60                   | 5.50                  | 0.20                      | 5.93             | 0.20                      |
| indeno[1,2,3-cd]pyrene                    | 4.50                   | 1.94                   | 1.98                  | 0.21                      | 2.25             | 0.22                      |
| dibenz[ah]anthracene                      | 0.92                   | 0.39                   | 0.44                  | < 0.05                    | 0.50             | < 0.05                    |
| benzo-[g,h,i]perylene                     | 6.51                   | 2.79                   | 2.45                  | 0.22                      | 2.79             | 0.22                      |
| anthanthrene                              | <0.1                   | <0.1                   | <0.1                  | <0.1                      | <0.1             | <0.1                      |
| dibenzo[a,l]pyrene                        | 0.17i                  | <0.1                   | <0.1                  | <0.1                      | <0.1             | <0.1                      |
| dibenzo[a,e]pyrene                        | 0.69i                  | <0.1                   | <0.1                  | <0.1                      | 0.22i            | <0.1                      |
| dibenzo[a,i]pyrene                        | 0.27i                  | <0.1                   | <0.1                  | <0.1                      | 0.14i            | <0.1                      |
| dibenzo[a,h]pyrene                        | <0.1                   | <0.1                   | <0.1                  | <0.1                      | <0.1             | <0.1                      |
| coronene                                  | <0.1                   | <0.1                   | <0.1                  | <0.1                      | <0.1             | <0.1                      |
| PAH 4 Sum Lower μg/kg                     | 23.44                  | 10.88                  | 27.20                 | 1.67                      | 29.94            | 1.67                      |
| PAH 4 Sum Upper μg/kg                     | 23.44                  | 10.88                  | 27.20                 | 1.67                      | 29.94            | 1.67                      |

FSAS -2014 28 of 38



| OEC Reference No.<br>Fera LIMS Sample No. | 22537<br>S14-<br>011220 | 22546<br>S14-<br>011294     | 22547<br>S14-<br>011295 | 22548<br>S14-<br>011296 | 22549<br>S14-<br>011297     |
|-------------------------------------------|-------------------------|-----------------------------|-------------------------|-------------------------|-----------------------------|
| Sample type                               | Common<br>Mussels       | Common<br>Mussels           | Common<br>Mussels       | Common<br>Mussels       | Pacific<br>Oysters          |
| Production area                           | Stromness<br>Voe        | Ardcastle<br>Bay<br>Mussels | Baltasound<br>Mussels   | Loch Roag<br>Barraglow  | Ardcastle<br>Bay<br>Oysters |
| Site name                                 | Burra<br>Holm           | Bay<br>Mussels              | Baltasound<br>Harbour   | Loch Roag<br>Barraglow  | Bay<br>Oysters              |
| μg/kg whole weight                        |                         |                             |                         |                         |                             |
| acenaphthylene                            | 0.22                    | 0.56                        | 0.26                    | <0.06                   | 0.47                        |
| acenaphthene                              | < 0.45                  | <0.48                       | < 0.45                  | <0.61                   | < 0.61                      |
| fluorene                                  | < 0.49                  | < 0.49                      | <0.5                    | <0.68                   | <0.68                       |
| phenanthrene                              | 3.39                    | 1.57                        | 1.46                    | <1.11                   | 1.72                        |
| anthracene                                | 0.18                    | 0.21                        | 0.11                    | <0.08                   | 0.25                        |
| fluoranthene                              | 3.96                    | 3.69i                       | 1.75                    | 0.63                    | 6.05i                       |
| benzo[c]fluorene                          | 0.22                    | 0.29                        | 0.09                    | 0.04                    | 0.38                        |
| pyrene                                    | 3.32i                   | 3.47i                       | 1.26                    | 0.47i                   | 5.56i                       |
| benzo[ghi]fluoranthene                    | 1.89                    | 1.64                        | 0.91                    | 0.22                    | 2.67                        |
| benz (a) anthracene                       | 1.51                    | 1.86                        | 0.54                    | 0.14                    | 2.50                        |
| benzo[b]naphtho[2,1-<br>d]thiophene       | 0.19                    | 0.40                        | 0.08                    | 0.04                    | 0.50                        |
| cyclopenta[c,d]pyrene                     | 0.14                    | 0.23                        | 0.11                    | 0.02                    | 0.29                        |
| chrysene                                  | 3.04                    | 3.56                        | 1.13                    | 0.31                    | 4.08                        |
| 5-methylchrysene                          | <0.01                   | 0.02                        | <0.01                   | <0.01                   | <0.01                       |
| benzo[b]fluoranthene                      | 2.65                    | 3.51                        | 1.05                    | 0.45                    | 6.14                        |
| benzo[j]fluoranthene                      | 1.03                    | 1.79                        | 0.45                    | 0.17                    | 2.03                        |
| benzo[k]fluoranthene                      | 0.95                    | 1.46                        | 0.36                    | 0.15                    | 2.70                        |
| benzo[e]pyrene                            | 2.48                    | 3.53                        | 1.45                    | 0.50                    | 5.76                        |
| benzo[a]pyrene                            | 0.58                    | 0.86                        | 0.17                    | 0.07                    | 1.46                        |
| indeno[1,2,3-cd]pyrene                    | 0.73                    | 0.91                        | 0.35                    | 0.19                    | 1.05                        |
| dibenz[ah]anthracene                      | 0.12                    | 0.18                        | < 0.06                  | < 0.04                  | 0.30                        |
| benzo-[g,h,i]perylene                     | 0.73                    | 1.33                        | 0.46                    | 0.26                    | 1.26                        |
| anthanthrene                              | <0.1                    | <0.1                        | <0.1                    | <0.1                    | <0.1                        |
| dibenzo[a,l]pyrene                        | <0.1                    | <0.1                        | <0.1                    | <0.1                    | <0.1                        |
| dibenzo[a,e]pyrene                        | <0.1                    | <0.1                        | <0.1                    | <0.1                    | <0.1                        |
| dibenzo[a,i]pyrene                        | <0.1                    | <0.1                        | <0.1                    | <0.1                    | <0.1                        |
| dibenzo[a,h]pyrene                        | <0.1                    | <0.1                        | <0.1                    | <0.1                    | <0.1                        |
| coronene                                  | <0.1                    | <0.1                        | <0.1                    | <0.1                    | <0.1                        |
| PAH 4 Sum Lower μg/kg                     | 7.78                    | 9.79                        | 2.89                    | 0.97                    | 14.18                       |
| PAH 4 Sum Upper μg/kg                     | 7.78                    | 9.79                        | 2.89                    | 0.97                    | 14.18                       |

FSAS -2014 29 of 38



| OEC Reference No. Fera LIMS Sample No. | 22550<br>S14-          | 22840<br>S14-             | 22588<br>S14-                      | 22589<br>S14-      | 22593<br>S14-     |
|----------------------------------------|------------------------|---------------------------|------------------------------------|--------------------|-------------------|
|                                        | 011298                 | 029990                    | 011395                             | 011396             | 011424            |
| Sample type                            | Razors                 | Razors<br>(Re-<br>sample) | Razors                             | Pacific<br>Oysters | Common<br>Mussels |
| Production area                        | Luce Bay               | Luce Bay                  | Forth<br>Estuary -<br>Largo<br>Bay | Kyle of<br>Tongue  | Kylesku           |
| Site name                              | Luce<br>Sand<br>Razors | Luce<br>Sand<br>Razors    | Largo<br>Bay                       | Tongue             | Loch<br>Glencowl  |
| μg/kg whole weight                     |                        |                           |                                    |                    |                   |
| acenaphthylene                         | 1.43                   | 0.22                      | 0.34                               | < 0.07             | 0.13              |
| acenaphthene                           | < 0.45                 | < 0.45                    | <0.61                              | < 0.43             | <0.61             |
| fluorene                               | 0.59                   | <0.48                     | 0.74                               | <0.48              | 1.55              |
| phenanthrene                           | 3.13                   | 0.79                      | 3.14                               | 0.96               | 9.72              |
| anthracene                             | 0.89                   | 0.11                      | 0.67                               | < 0.05             | 0.41              |
| fluoranthene                           | 14.55i                 | 1.56                      | 6.30                               | 1.57               | 2.01i             |
| benzo[c]fluorene                       | 0.84                   | 0.09                      | 0.56                               | 0.05               | 0.25              |
| pyrene                                 | 13.52i                 | 0.47                      | 5.64i                              | 0.82               | 2.03i             |
| benzo[ghi]fluoranthene                 | 4.20                   | 0.57                      | 1.34                               | 0.36               | 0.62              |
| benz (a) anthracene                    | 7.04                   | 0.55                      | 2.66                               | 0.17               | 0.47              |
| benzo[b]naphtho[2,1-<br>d]thiophene    | 1.00                   | 0.13                      | 0.39                               | 0.04               | 0.81              |
| cyclopenta[c,d]pyrene                  | 0.11                   | 0.56                      | 0.06                               | <0.01              | 0.07              |
| chrysene                               | 7.72                   | 0.70                      | 2.49                               | 0.34               | 1.00              |
| 5-methylchrysene                       | <0.01                  | <0.01                     | 0.01                               | <0.01              | <0.01             |
| benzo[b]fluoranthene                   | 8.76                   | 0.77                      | 2.31                               | 0.51               | 0.96              |
| benzo[j]fluoranthene                   | 4.10                   | 0.33                      | 1.10                               | 0.12               | 0.37              |
| benzo[k]fluoranthene                   | 4.67                   | 0.39                      | 1.09                               | 0.16               | 0.36              |
| benzo[e]pyrene                         | 13.46                  | 1.06                      | 2.72                               | 0.53               | 1.26              |
| benzo[a]pyrene                         | 5.82                   | 0.20                      | 1.83                               | <0.05              | 0.22              |
| indeno[1,2,3-cd]pyrene                 | 2.06                   | 0.22                      | 0.90                               | 0.09               | 0.38              |
| dibenz[ah]anthracene                   | 0.46                   | <0.03                     | 0.18                               | <0.03              | <0.09             |
| benzo-[g,h,i]perylene                  | 2.61                   | 0.22                      | 1.37                               | 0.13               | 0.85              |
| anthanthrene                           | <0.1                   | <0.1                      | <0.1                               | <0.1               | <0.1              |
| dibenzo[a,l]pyrene                     | <0.1                   | <0.1                      | <0.1                               | <0.1               | <0.1              |
| dibenzo[a,e]pyrene                     | 0.34i                  | <0.1                      | <0.1                               | <0.1               | <0.1              |
| dibenzo[a,i]pyrene                     | 0.12i                  | <0.1                      | 0.13i                              | <0.1               | <0.1              |
| dibenzo[a,h]pyrene                     | <0.1                   | <0.1                      | <0.1                               | <0.1               | <0.1              |
| coronene                               | <0.1                   | <0.1                      | <0.1                               | <0.1               | <0.1              |
| PAH 4 Sum Lower μg/kg                  | 29.34                  | 2.22                      | 9.29                               | 1.02               | 2.65              |
| PAH 4 Sum Upper μg/kg                  | 29.34                  | 2.22                      | 9.29                               | 1.07               | 2.65              |

FSAS -2014 30 of 38



Table 3.6 Heavy metal concentrations (mg/kg whole weight)

| OEC Reference No.    | 22254             | 22255                           | 22256                            | 22257             | 22258             | 22259                               | 22260                                                 | 22261          | 22262                      | 22267                     |
|----------------------|-------------------|---------------------------------|----------------------------------|-------------------|-------------------|-------------------------------------|-------------------------------------------------------|----------------|----------------------------|---------------------------|
| Fera LIMS Sample No. | S14-<br>008357    | S14-<br>008358                  | S14-<br>008359                   | S14-<br>008360    | S14-<br>008361    | S14-<br>008362                      | S14-<br>009098                                        | S14-<br>009099 | S14-<br>009165             | S14-<br>009647            |
| Sample type          | Native<br>Oysters | Surf Clams                      | Surf<br>Clams                    | Common<br>Mussels | Razors            | Pacific<br>Oysters                  | Common<br>Mussels                                     | Razors         | Queen<br>Scallops          | Common<br>Mussels         |
| Production area      | Loch<br>Ryan      | Forth<br>Estuary:<br>Pittenweem | Forth<br>Estuary -<br>Anstruther | Mid Yell<br>Voe   | Ferness<br>bay    | Loch<br>Spelve -<br>Croggan<br>Pier | Vaila<br>Sound:East<br>of Linga<br>and<br>Galtaskerry | West<br>Jura   | Loch<br>Fyne<br>Stonefield | Loch<br>Inchard           |
| Site name            | Loch<br>Ryan      | Pittenweem<br>Surfs             | Anstruther                       | Camb              | Ferness<br>Razors | Croggan<br>Pier                     | Whitesness                                            | Jura           | North Bay                  | Loch<br>Inchard<br>Site 4 |
| Cr                   | 0.16              | 0.21                            | 0.28                             | ~0.08             | ~0.08             | ~0.05                               | ~0.07                                                 | 0.17           | ~0.08                      | ~0.08                     |
| Mn                   | 3.83              | 2.06                            | 5.56                             | 0.99              | 0.61              | 2.92                                | 1.66                                                  | 1.20           | 28.9                       | 0.65                      |
| Co                   | 0.045             | 0.136                           | 0.151                            | 0.020             | 0.028             | 0.023                               | 0.019                                                 | 0.072          | 0.054                      | 0.018                     |
| Ni                   | 0.14              | 0.25                            | 0.28                             | ~0.10             | ~0.04             | ~0.05                               | ~0.08                                                 | ~0.05          | ~0.09                      | ~0.07                     |
| Cu                   | 10.87             | 1.28                            | 1.50                             | 0.71              | 0.82              | 8.09                                | 0.57                                                  | 1.16           | 2.67                       | 0.61                      |
| Zn                   | 293               | 7.21                            | 7.34                             | 10.5              | 12.6              | 398                                 | 14.3                                                  | 14.9           | 41.3                       | 9.35                      |
| As                   | 1.17              | 1.44                            | 1.42                             | 1.10              | 1.22              | 1.50                                | 0.88                                                  | 1.55           | 1.48                       | 1.14                      |
| Se                   | 0.402             | 0.365                           | 0.417                            | 0.218             | 0.230             | 0.220                               | 0.202                                                 | 0.271          | 0.480                      | 0.260                     |
| Ag                   | 1.435             | 0.213                           | 0.340                            | < 0.003           | 0.039             | 0.462                               | < 0.003                                               | 0.273          | 1.279                      | ~0.008                    |
| Cd                   | 0.400             | 0.065                           | 0.070                            | 0.061             | 0.039             | 0.224                               | 0.113                                                 | 0.023          | 0.399                      | 0.105                     |
| Hg                   | 0.016             | 0.017                           | 0.015                            | ~0.005            | 0.008             | 0.011                               | ~0.005                                                | 0.014          | 0.015                      | 0.008                     |
| Pb                   | 0.067             | 0.101                           | 0.147                            | 0.073             | 0.037             | 0.050                               | 0.121                                                 | 0.051          | 0.167                      | 0.054                     |

FSAS -2014 31 of 38

<sup>&#</sup>x27;~'indicates the measured value was above LoD but below LoQ



| OEC Reference No.    | 22285             | 22286          | 22287               | 22288                   | 22289                       | 22353             | 22418             | 22419             | 22420                |
|----------------------|-------------------|----------------|---------------------|-------------------------|-----------------------------|-------------------|-------------------|-------------------|----------------------|
| Fera LIMS Sample No. | S14-<br>009687    | S14-<br>009688 | S14-<br>009689      | S14-<br>009690          | S14-<br>009691              | S14-<br>009765    | S14-<br>010000    | S14-<br>010001    | S14-<br>010002       |
| Sample type          | Common<br>Mussels | Razors         | Pacific<br>Oysters  | Common<br>Mussels       | Pacific<br>Oysters          | Common<br>Cockles | Common<br>Cockles | Common<br>Mussels | Common<br>Mussels    |
| Production area      | Dornoch<br>Firth  | North<br>Bay   | Fairlie             | East<br>Loch<br>Tarbert | Loch Fyne<br>Otter<br>Ferry | Traigh<br>Mhor    | North<br>Ford     | Loch<br>Sunart    | Loch<br>Leurbost     |
| Site name            | Dornoch<br>Firth  | Barassie       | Southannan<br>Sands | Sound of<br>Scalpey     | Balliemore                  | Traigh<br>Mhor    | Ortir<br>Mhor     | Liddesdale        | Eilean<br>Mhiabhaing |
| Cr                   | 0.15              | 0.29           | ~0.08               | ~0.10                   | ~0.06                       | 0.15              | 0.21              | ~0.08             | 0.13                 |
| Mn                   | 6.10              | 1.67           | 4.41                | 0.78                    | 3.03                        | 0.76              | 0.89              | 2.74              | 1.43                 |
| Со                   | 0.033             | 0.062          | 0.031               | 0.025                   | 0.024                       | 0.064             | 0.088             | 0.024             | 0.029                |
| Ni                   | 0.12              | 0.11           | ~0.08               | ~0.09                   | ~0.06                       | 1.10              | 1.89              | ~0.08             | 0.13                 |
| Cu                   | 0.51              | 0.91           | 12.31               | 0.71                    | 6.41                        | 0.38              | 0.62              | 0.78              | 0.77                 |
| Zn                   | 4.34              | 14.3           | 157                 | 8.79                    | 83.7                        | 4.19              | 6.89              | 9.14              | 9.17                 |
| As                   | 0.93              | 1.34           | 1.81                | 1.18                    | 1.31                        | 0.88              | 1.56              | 1.18              | 1.17                 |
| Se                   | 0.171             | 0.213          | 0.274               | 0.256                   | 0.179                       | 0.128             | 0.187             | 0.317             | 0.289                |
| Ag                   | < 0.003           | 0.085          | 0.670               | < 0.003                 | 0.430                       | 0.015             | 0.045             | ~0.010            | ~0.007               |
| Cd                   | 0.071             | 0.023          | 0.153               | 0.056                   | 0.176                       | 0.050             | 0.031             | 0.057             | 0.046                |
| Hg                   | 0.012             | 0.009          | 0.013               | ~0.006                  | 0.009                       | ~0.004            | 0.011             | 0.009             | ~0.006               |
| Pb                   | 0.057             | 0.061          | 0.081               | 0.113                   | 0.037                       | 0.019             | 0.054             | 0.987             | 0.082                |

<sup>&#</sup>x27;~'indicates the measured value was above LoD but below LoQ

FSAS -2014 32 of 38



| OEC Reference No.    | 22432                               | 22834                               | 22433                   | 22434                    | 22451                  | 22452                  | 22453                  | 22456               | 22457            | 22537             |
|----------------------|-------------------------------------|-------------------------------------|-------------------------|--------------------------|------------------------|------------------------|------------------------|---------------------|------------------|-------------------|
| Fera LIMS Sample No. | S14-<br>010197                      | S14-<br>029694                      | S14-<br>010267          | S14-<br>010268           | S14-<br>010538         | S14-<br>010539         | S14-<br>010540         | S14-<br>010829      | S14-<br>010830   | S14-<br>011220    |
| Sample type          | King<br>Scallops                    | King<br>Scallops<br>(Re-<br>sample) | Common<br>Mussels       | Common<br>Mussels        | Common<br>Mussels      | Common<br>Mussels      | Common<br>Mussels      | Razors              | Razors           | Common<br>Mussels |
| Production area      | Loch<br>Ewe and<br>Loch<br>Thurnaig | Loch<br>Ewe &<br>Loch<br>Thurnaig   | Clift<br>Sound<br>Houss | Clift<br>Sound:<br>Booth | Olna<br>Firth<br>Inner | Loch<br>Leven<br>Upper | Loch<br>Leven<br>Lower | Stevenston<br>Sands | Meikle<br>Craigs | Stromness<br>Voe  |
| Site name            | Loch<br>Ewe<br>Scallops             | Loch<br>Ewe<br>Scallops             | Clift<br>Sound<br>Houss | Booth                    | Inner                  | Upper                  | Lower                  | Stevenston<br>Sands | Silver<br>Sands  | Burra<br>Holm     |
| Cr                   | 0.14                                | 0.097                               | ~0.08                   | 0.12                     | ~0.09                  | ~0.09                  | 0.14                   | 0.20                | 0.19             | ~0.05             |
| Mn                   | 25.5                                | 16.21                               | 0.79                    | 0.69                     | 0.50                   | 3.66                   | 4.62                   | 0.65                | 0.88             | 4.06              |
| Co                   | 0.037                               | 0.018                               | 0.021                   | 0.025                    | 0.018                  | 0.027                  | 0.032                  | 0.054               | 0.051            | 0.031             |
| Ni                   | 0.10                                | 0.068                               | 0.11                    | ~0.10                    | ~0.09                  | ~0.08                  | 0.13                   | ~0.03               | ~0.03            | ~0.07             |
| Cu                   | 0.70                                | 0.543                               | 0.83                    | 0.97                     | 0.59                   | 0.62                   | 0.96                   | 0.88                | 0.94             | 0.56              |
| Zn                   | 31.2                                | 31.65                               | 11.4                    | 13.6                     | 13.7                   | 6.54                   | 6.28                   | 18.0                | 16.8             | 12.9              |
| As                   | 1.81                                | 1.457                               | 1.02                    | 1.12                     | 1.10                   | 1.15                   | 1.10                   | 1.29                | 1.22             | 0.98              |
| Se                   | 0.482                               | 0.304                               | 0.252                   | 0.239                    | 0.275                  | 0.299                  | 0.323                  | 0.232               | 0.230            | 0.224             |
| Ag                   | 0.058                               | 0.019                               | <0.003                  | < 0.003                  | < 0.003                | ~0.006                 | ~0.006                 | 0.127               | 0.107            | ~0.004            |
| Cd                   | 3.92                                | 0.522                               | 0.072                   | 0.051                    | 0.089                  | 0.047                  | 0.045                  | 0.029               | 0.028            | 0.071             |
| Hg                   | 0.013                               | 0.016                               | ~0.004                  | 0.008                    | ~0.006                 | 0.009                  | 0.011                  | 0.011               | 0.012            | ~0.006            |
| Pb                   | 0.085                               | 0.125                               | 0.080                   | 0.128                    | 0.124                  | 0.083                  | 0.097                  | 0.053               | 0.060            | 0.058             |

FSAS -2014 33 of 38

<sup>&#</sup>x27;~'indicates the measured value was above LoD but below LoQ



| OEC Reference No.    | 22546                       | 22547                 | 22548                      | 22549                       | 22550                  | 22588                              | 22589              | 22593             |
|----------------------|-----------------------------|-----------------------|----------------------------|-----------------------------|------------------------|------------------------------------|--------------------|-------------------|
| Fera LIMS Sample No. | S14-<br>011294              | S14-<br>011295        | S14-<br>011296             | S14-<br>011297              | S14-<br>011298         | S14-<br>011395                     | S14-<br>011396     | S14-<br>011424    |
| Sample type          | Common<br>Mussels           | Common<br>Mussels     | Common<br>Mussels          | Pacific<br>Oysters          | Razors                 | Razors                             | Pacific<br>Oysters | Common<br>Mussels |
| Production area      | Ardcastle<br>Bay<br>Mussels | Baltasound<br>Mussels | Loch<br>Roag:<br>Barraglom | Ardcastle<br>Bay<br>Oysters | Luce<br>Bay            | Forth<br>Estuary -<br>Largo<br>Bay | Kyle of<br>Tongue  | Loch<br>Glencoul  |
| Site name            | Ardcastle<br>Mussels        | Baltasound<br>Harbour | Loch<br>Barraglom          | Ardcastle<br>Oysters        | Luce<br>Sand<br>Razors | Largo<br>Bay                       | Kyle of<br>Tongue  | Kylesku           |
| Cr                   | ~0.09                       | 0.33                  | ~0.08                      | ~0.04                       | 0.13                   | 0.13                               | ~0.08              | 0.58              |
| Mn                   | 5.37                        | 0.68                  | 0.52                       | 4.48                        | 1.24                   | 1.69                               | 2.06               | 1.58              |
| Со                   | 0.045                       | 0.060                 | 0.021                      | 0.025                       | 0.036                  | 0.070                              | 0.018              | 0.044             |
| Ni                   | 0.12                        | 0.54                  | ~0.08                      | ~0.07                       | < 0.02                 | ~0.08                              | ~0.04              | 0.32              |
| Cu                   | 0.75                        | 0.69                  | 0.61                       | 11.07                       | 0.95                   | 1.42                               | 3.61               | 0.84              |
| Zn                   | 7.38                        | 11.1                  | 8.47                       | 115                         | 16.2                   | 14.3                               | 93.2               | 12.8              |
| As                   | 1.44                        | 1.15                  | 1.10                       | 1.74                        | 1.20                   | 1.13                               | 1.28               | 1.55              |
| Se                   | 0.418                       | 0.245                 | 0.314                      | 0.322                       | 0.221                  | 0.215                              | 0.169              | 0.503             |
| Ag                   | ~0.004                      | ~0.003                | < 0.003                    | 0.747                       | 0.124                  | 0.039                              | 0.186              | 0.013             |
| Cd                   | 0.075                       | 0.103                 | 0.058                      | 0.263                       | 0.025                  | 0.017                              | 0.217              | 0.096             |
| Hg                   | 0.012                       | ~0.005                | ~0.007                     | 0.010                       | 0.009                  | 0.008                              | 0.009              | 0.013             |
| Pb                   | 0.061                       | 0.086                 | 0.069                      | 0.032                       | 0.075                  | 0.106                              | 0.035              | 0.105             |

FSAS -2014 34 of 38

<sup>&#</sup>x27;~' indicates the measured value was above LoD but below LoQ



#### 5. References

- European Commission (2004) Commission Regulation (EC) No 854/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Official Journal of the European Union, L226/83, 25.6.2004
- 2. European Commission (2005). Commission Regulation (EC) No 208/2005 of 4 February 2005 amending Regulation (EC) No 466/2001 as regards polycyclic aromatic hydrocarbons *Official Journal of the European Union*, L34/3, 8.2.2005
- 3. European Commission (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. *Official Journal of the European Union*, L364, 20/12/2006, 0005-0024.
- 4. European Commission (2008).Commission Regulation (EC) No 629/2008 of 3 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs *Official Journal of the European Union*, L173/6, 3.7.2008
- European Commission (2007) Commission Regulation (EC) No 333/2007 of 28 March 2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs Official Journal of the European Union, L88/29, 29.3.2007
- European Commission (2011).Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in food stuffs.
- 7. European Commission (2011).Commission Regulation (EU) No 1259/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs.
- 8. European Commission (2012). Commission Regulation (EU) No 252/2012 of 21 March 2012 laying down methods of sampling and analysis for the official control of levels of dioxins, dioxin- like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EC) No 1883/2006 Official Journal of the European Union, L84/1, 23.3.2012
- 9. European Food Safety Authority (EFSA), (2008) Polycyclic Aromatic Hydrocarbons in Food: Scientific Opinion of the Panel on Contaminants in the Food Chain. (Question N° EFSA-Q-2007-136) *The EFSA Journal* (2008) 724

FSAS 2014 35 of 38



- 10. FAPAS Proficiency Test 0648 Report, Environmental Contaminants, PAHs in Palm Oil -April – June 2011. (Consensus value data from participating laboratories used for establishing acceptance criteria for use as an in-house reference material.)
- 11. FAPAS Proficiency Test 0642 Report, Environmental Contaminants, PAHs in Smoked Fish Pate, September-November 2009. (Participant laboratory consensus values and preparation homogeneity data used for setting the acceptance criteria for use as an inhouse reference material.)
- 12. FAPAS Proficiency Test 0638 Report, Environmental Contaminants, PAHs in Cocoa Butter, October – November 2008. (Participant laboratory consensus values and homogeneity data used for setting the acceptance criteria for an in-house reference material.)
- 13. FAPAS Proficiency Test 0630 Report, Environmental Contaminants, 16 EU Priority PAHs in Olive Oil, November 2006 January 2007.
- 14. Fernandes A, Holland J, Brereton N and Rose M (2012). Chemical contaminant sampling and analysis of shellfish from classified harvesting areas 2012. Report to the Food Standards Agency, Scotland. Fera Report No. FD 12/03.
- 15. Fernandes A, White S, D'Silva K and Rose M (2004), Simultaneous Determination of PCDDs, PCDFs, PCBs and PBDEs in Food, *Talanta*, 63, 1147-1155. 2.
- Fernandes, A., Mortimer, D., Dicks, P., Gem, M., Smith, F., Rose, M., (2009).
   Brominated dioxins (PBDD/Fs), PBBs and PBDEs in Marine Shellfish in the UK.
   Food Add. Contam. 26(6), 918-927.
- 17. Food Standards Agency, 2003. Dioxins and dioxin-like PCBs in the UK diet: 2001 total diet study samples, Food Surveillance Information Sheet No. 38/2003, FSA, London.
- 18. Food Standards Agency, 2005. Survey of polycyclic aromatic hydrocarbons in shellfish. Food Survey Information Sheet 83/05, FSA London, October 2005
- 19. Food Standards Agency (2009) Survey on measurement of the concentrations of metals and other elements from the 2006 UK total diet study. FSIS No. 01/2009, FSA, London
- 20. Garraud H, Vacchina V, Seby F, Dumont J, Sirot V, Guerin T, Leblanc J (2007) Analytical methodologies for the speciation of trace metals in seafood samples in a benefit/risk approach (CALIPSO study) *Annales de Toxicol. Analytique*, 19(1), 71-80
- 21. "Interlaboratory Comparison on dioxins and PBDEs in food (2011) Twelth round of an International Study" Norwegian Institute of Public Health, Oslo, Norway, Available at: http://www.fhi.no/dav/4be109b07d.pdf

FSAS 2014 36 of 38



- 22. "Interlaboratory Comparison on dioxins and PBDEs in food (2012) Thirteenth round of an International Study" Norwegian Institute of Public Health, Oslo, Norway, Available at: http://www.fhi.no/ilc
- 23. Lee K, Lee J H, Lee J S, Park K, Kim S, Shim W, Hong S, Im U, Giesy J., and Oh J (2007) Human Exposure to Dioxin-Like Compounds in Fish and Shellfish Consumed in South Korea. Human and Ecological Risk Assessment, 13, 223–235.
- 24. Rose M, White S, MaCarthur R, Petch R, Holland J, & Damant A.(2007). Single -laboratory validation of a GC/MS Method for the determination of 27 polycyclic aromatic hydrocarbons in oils and fats. *Food Additives & Contaminants Vol 24 Number 6 June 2007*, 635-651
- 25. Scientific Committee on Food. (2002). Opinion of the Scientific Committee on Food on the risks to human health of Polycyclic Aromatic Hydrocarbons in food.

  SCF/CS/CNTM/PAH/29 Final. Scientific Committee on Food
- 26. Van den Berg, M, Birnbaum, L.S, Denison, M, De Vito, M, Farland, W, Feeley, M, Fiedler, H, Hakansson, H, Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., Peterson, R. E. (2006). The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds. Toxicol. Sci. 93, 223–241.

FSAS 2014 37 of 38



All printed publications and literature produced by Fera are subject to Crown copyright protection unless otherwise indicated.

This report has been prepared by FERA after exercise of all reasonable care and skill, but is provided without liability in its application and use.

Opinions and interpretation are outside the scope of UKAS accreditation.

DEFRA hereby excludes all liability for any claim, loss, demands or damages of any kind whatsoever (whether such claims, loss, demands or damages were foreseeable, known or otherwise) arising out of or in connection with the preparation of any technical or scientific report, including without limitation, indirect or consequential loss or damage; loss of actual or anticipated profits (including loss of profits on contracts); loss of revenue; loss of business; loss of opportunity; loss of anticipated savings; loss of goodwill; loss of reputation; loss of damage to or corruption of data; loss of use of money or otherwise, and whether or not advised of the possibility of such claim, loss demand or damages and whether arising in tort (including negligence), contract or otherwise. This statement does not affect your statutory rights.

Nothing in this disclaimer excludes or limits DEFRA's liability for: (a) death or personal injury caused by DEFRA's negligence (or that of its employees, agents or directors); or (b) the tort of deceit; [or (c) any breach of the obligations implied by Sale of Goods Act 1979 or Supply of Goods and Services Act 1982 (including those relating to the title, fitness for purpose and satisfactory quality of goods);] or (d) any liability which may not be limited or excluded by law (e) fraud or fraudulent misrepresentation.

The parties agree that any matters are governed by English law and irrevocably submit to the non-exclusive jurisdiction of the English courts.

© Crown copyright 2014

FSAS 2014 38 of 38